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1 Executive Summary

This deliverable represents a significant maturation milestone in the XReco project’s WP4, transitioning from the
foundational technologies presented in D4.1 to integrated, production-ready services within a distributed
microservices architecture. This second version deliverable demonstrates substantial progress in validation,
implementation and platform optimisation, addressing the critical evolution from prototype to production-ready
systems.

The deliverable highlights the successful validation and deployment of all major XReco services included in the
MVP, while also showcasing additional algorithms that extend beyond the MVP’s core scope. This achievement
enables seamless integration across the platform’s ecosystem, maintaining modularity and scalability essential
for broad adoption. Through this evolution, the project demonstrates its commitment not only to technological
innovation but also delivering practical, implementable solutions that address real-world challenges in content
search and creation.

The deliverable showcases the successful validation and deployment of all major XReco services that are part of
the XReco MVP, enabling seamless integration across the platform’s ecosystem while maintaining the modularity
and scalability essential for broad adoption. This evolution reflects the project’s commitment to delivering not
just technological innovation, but practical, implementable solutions that address real-world content search and
content creation challenges.

In a nutshell, this deliverable provides a description regarding the activities within WP4 until M34, encompassing
five tasks:

e Content sourcing and filtering (T4.1): Services for content search, incoming content monitoring and filtering
according to a particular topic or production, interactive retrieval of content, location-centric retrieval, MR
interfaces for content retrieval.

o Neural rendering services (T4.2): Services for reconstructing 3D scenes from 2D image data utilizing Neural
Radiance Field (NeRF) approaches, as well as Network Acceleration infrastructure.

e 3D asset aggregation and optimisation services (T4.3): Services for 3D reconstruction from 2D image data
employing computer vision as well as machine learning pipelines. Additionally, services for media content
(video, 3D point cloud data) enhancement.

o XRvolumetric and Free Viewpoint Video services (T4.4): Services for producing human-centred volumetric
and free-viewpoint video, utilising RGB-D data.

e APIs and authoring tool development (T4.5): The development of authoring tools, as well as of appropriate
communication APIs between authoring tools and XReco services.

These tasks collectively contribute to the goal of advancing the capabilities of XR applications, with a focus on
content creation, and integration. This progress is pivotal for fostering innovation and modularity within the XR
landscape, ultimately enhancing the quality and diversity of immersive experiences and content creation.
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2 Introduction

This deliverable reports on the maturation and integration of the vertical technologies that enable XR application
realisation according to the use cases and requirements specified in WP5 and WP2 respectively. Building upon
the foundational work presented in D4.1, this deliverable documents the successful transition from prototype
technologies to production-ready services deployed within a distributed microservices architecture.

The containerisation and integration efforts represent a significant milestone in the XReco project timeline,
showcasing not just technological innovation but the practical implementation of scalable, enterprise-grade
solutions addressing real-world content search and content creation challenges. This evolution has been carefully
orchestrated to maintain modularity while enabling seamless interoperability between services, reflecting
modern practices and cloud-native design principles.

Since the initial development phase, the XReco platform has undergone substantial architectural refinements to
ensure optimal performance, reliability, and scalability. The adoption of containerisation technologies has
enabled consistent deployment across diverse environments while facilitating rapid iteration based on user
feedback and changing requirements.

The implementation follows a microservices approach where each component operates independently yet
integrated coherently within the overall ecosystem. This design supports horizontal scaling of high-demand
services without impacting the entire platform, a critical consideration for processing-intensive operation like
neural rendering.

The work package continues to be organised into five interconnected tasks, each now reaching production
readiness for most of the developed technologies with validated implementations. The current status reflects
substantial progress in validation, implementation, and platform optimisation since D4.1.

2.1 Document Organisation

Considering the diverse technical domains covered within WP4 and their advanced implementation status, this
deliverable is organised to highlight both the technical achievements and the integration aspects of most
components. In contrast with D4.1 which was organised according to the Task structure within WP4, this updated
version is structured in consistent technological thematic areas, in order to provide a coherent flow and
readability, as well as an overview of the achievements. The document structure is as follows:

Section 3: Content Search, Monitoring, and Filtering presents the intelligent content discovery and management
services that operate on top of the Neural Media Repository (NMR). This section encompasses the Mixed Reality
multimedia retrieval system, news content tagging using fined-tuned Large Language Models (LLMs), and novel
content detection methodologies. These services form the foundation for content curation and discovery
workflows that enable efficient asset management across the XReco platform.

Section 4: Scene Reconstruction Services addresses the core 3D reconstruction capabilities, encompassing both
neural rendering approaches and more traditional computer vision methodologies. Neural rendering services
include the enhanced Fast NeRF in-the-wild implementation with octree optimisation, 3D Gaussian Splatting
(3DGS), and fast neural reconstruction. Computer vision services focus on Structure from Motion (SfM) with
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Multi-View Stereo densification. This section demonstrates the platform’s ability to transform 2D visual content
into 3D representations suitable for XR applications.

Section 5: Scene Reconstruction Services Validation provides comprehensive quality evaluation methodologies
and results for the reconstruction services described in Section 4. This unified validation approach represents a
significant advancement over D4.1, demonstrating the maturation of evaluation frameworks and the
establishment of quality benchmarks across different reconstruction methodologies. The section includes both
objective metrics and subjective evaluation protocols, ensuring robust assessment of reconstruction fidelity.

Section 0: Human-Centred Reconstruction, Volumetric and Free-Viewpoint Video focuses on specialised
services for capturing and rendering human subjects in XR environments. This includes GDNeRF for sparse-view
human reconstruction, human-centred Gaussian Splatting approaches, RGB-D based free-viewpoint video (FVV)
systems, holoportation capabilities, and automated 3D face reconstruction services. These technologies address
the specific challenges of human representation in immersive media productions.

Section 7: Asset Aggregation and Optimisation Services presents enhancement and optimisation technologies
that improve the quality and usability of multimedia assets. This encompasses 2D video upscaling services, blind
face restoration capabilities, human-centred point cloud super-resolution, comprehensive 3D data enhancement
methodologies, and 3D content generation services. These services ensure that assets within the XReco
ecosystem meet quality standards regardless of their original capture conditions.

Section 8: Network Acceleration Infrastructure describes the underlying computational and networking
optimisations that enable efficient deployment of XReco services. This includes direct memory management
approaches, unified cloud services tools, and performance optimisation strategies that support the real-time
processing requirements of XR content creation.

Section 9: Authoring Tool Development and Service Communication presents the integrated authoring
environments that enable content creators to leverage XReco services effectively. This encompasses Unity-based
authoring, XR Capsules for template-driven content creation, the Orchestrator dashboard for service
coordination, and a CMS-based authoring solution for location-specific content development.

Supporting Documentation and Technical Details

Annex |: Extended Information for Components Context provides detailed implementation specifications and
technical documentation that support the main content. This includes comprehensive details on sample
structures for RSS items in news content tagging, complete APl implementation for the GDNeRF service, and
other technical specifications that enable developers to integrate XReco services.

Annex Il: RGB-D Cameras Information offers comprehensive information on RGB-D sensor technologies,
including detailed comparisons of capture devices and depth estimation algorithms. This technical reference
supports the implementation decisions described throughout the document and provides guidance for hardware
selection in different deployment scenarios.
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3 Content search, monitoring, and filtering

3.1 Overview

This section describes tools and frontends building on top of the NMR described in D3.1 and D3.2. As these
components are part of the authoring workflow, they are addressed in WP4.

Most of these components are backend components that filter incoming content to select items relevant for
stories being worked on, a component for tagging news content and interfaces for media search, including novel
search paradigms such as search in mixed reality.

3.2 Content sourcing and filtering

The content sourcing and filtering component aims to automatically select content items from those ingested
into the NMR, based on the relevance of those items for stories being worked on. These are represented by the
content collected for them, materialised as content baskets (see D3.1 for a description of the concept and
implementation of content baskets). The content involved may be multimodal, i.e., include text, 2D, and 3D
content. The aim is to select candidate items that may be of relevance for the work of the journalist or content
creator.

D4.1 has described the adaptation of the USTORY! framework to make it compatible with a newer deep learning
framework version, and to exchange the backbone network with CLIP?, in order to support multimodal content.
This section focuses on the novel content detection aspect, describing first a video-to-text service, and then an
LLM-based novel content detection approach on the resulting texts.

3.2.1 Video to text

The video-to-text component is responsible for analysing video content and determining whether it introduces
novel elements relevant to a story currently in development, in terms of content baskets. In order to perform
downstream tasks such as novelty detection, text is a more sustainable and interoperable representation than
feature embeddings. This allows to apply the current state of the art of language models, without lock-in on a
specific feature embedding space. Unlike image captioning, which focuses on visual information within single
frames (spatial information), video to text (V2T) must also account for the semantics over time (temporal
information), making it a more complex challenge?.

1Yoon, Susik, et al. "Unsupervised Story Discovery from Continuous News Streams via Scalable Thematic Embedding." arXiv
preprint arXiv:2304.04099 (2023).
2 Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on
machine learning. PMLR, 2021.
3 Moloud Abdar et al., “A Review of Deep Learning for Video Captioning,” 2023, http://arxiv.org/abs/2304.11431.
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For several years, video captioning was tackled using task specific models, often based on LSTM* architectures.
Early approaches were inspired by image captioning techniques and typically generated single-sentence
descriptions.

Subsequently, "dense video captioning" methods emerged, aiming to produce longer and more detailed
descriptions. These models included segmenting videos into actions® or events®, which were then translated into
sentences. With multimodal embeddings, models like VideoBERT improved representation.

More recently, transformer-based models, such as mPLUG-28 and VAST®, have advanced the field by leveraging
vision-language integration. However, keeping pace with the capabilities of general-purpose multimodal large
language models (MLLMs) remains a significant challenge.

MLLMs have accelerated video captioning progress'®, offering flexible solutions through fine-tuning or
prompting. Many are vision/video variants of broader LLM families, including VideoLLaMA, InternVideo2'?,
Deepseek-VL, and Pixtral'®*. Table 1 summarizes recent open-source methods.

Table 1: A selection of recent video to text methods with permissive licenses.

Specific 2023 Apache-2.0 Combines pre-trained vision and language
transformers for video to text tasks.
Specific 2023 MIT Fuses video, audio, and subtitle information via a

transformer architecture.

4 Anna Rohrbach, Marcus Rohrbach, and Bernt Schiele, “The Long-Short Story of Movie Description,” in Pattern Recognition:
37th German Conference, GCPR 2015, Aachen, Germany, October 7-10, 2015, Proceedings 37 (Springer, 2015), 209-21.
5 Andrew Shin, Katsunori Ohnishi, and Tatsuya Harada, “Beyond Caption to Narrative: Video Captioning with Multiple
Sentences,” in 2016 IEEE International Conference on Image Processing (ICIP) (IEEE, 2016), 3364—-68.
6 Ranjay Krishna et al., “Dense-Captioning Events in Videos,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, 706-15.
7 Chen Sun et al., “Videobert: A Joint Model for Video and Language Representation Learning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, 7464-73.
8 Haiyang Xu et al., “mPLUG-2: A Modularized Multi-Modal Foundation Model Across Text, Image and Video,” in Proceedings
of the International Conference on Machine Learning (PMLR, 2023).
9 Sihan Chen et al., “VAST: A Vision-Audio-Subtitle-Text Omni-Modality Foundation Model and Dataset,” in Conference on
Neural Information Processing Systems, 2023.
10 Yunlong Tang et al., “Video Understanding with Large Language Models: A Survey,” IEEE Transactions on Circuits and
Systems for Video Technology, 2025.
11 Zesen Cheng et al., “VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs”
(arXiv, 2024), https://doi.org/10.48550/arXiv.2406.07476.
12 Yi Wang et al., “InternVideo2: Scaling Foundation Models for Multimodal Video Understanding,” in Proceedings of the
European Conference on Computer Vision, 2024, http://arxiv.org/abs/2403.15377.
13 Zhiyu Wu et al., “Deepseek-VI2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding,”
arXiv Preprint arXiv:2412.10302, 2024.
14 pravesh Agrawal et al., “Pixtral 12B,” arXiv Preprint arXiv:2410.07073, 2024.
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MLLM 2024 Apache-2.0 Employs temporal modelling through LLMs with
the DREAM evaluation benchmark.

MLLM 2024 Apache-2.0 Enhances spatio-temporal understanding with a
convolutional connector.

MLLM 2023 Apache-2.0 Supports long-context inputs/outputs and high-
resolution inputs.

MLLM 2024 Apache-2.0 MVBench benchmark for spatio-temporal
understanding with VideoChat2 as a baseline.

MLLM 2024 Apache-2.0 Leader on MVBench for fine-grained action
description, supports long-context inputs.

MLLM 2024 MIT & DsML Efficient MLLM with competitive performance.

MLLM 2024 Apache-2.0 Efficient model from the mistral family with image
support.

3.2.2 Service architecture

Video captioning presents challenges across the entire processing pipeline, beginning with variations in input
video properties and extending to the requirements of the textual output. Differences in video length, resolution,
orientation, and frame rate can complicate practical implementation. Simultaneously, output expectations may
vary in terms of language, structural format (e.g., natural language vs. keywords), level of detail, and length,
adding further complexity.

To ensure robustness and flexibility, we adopted a modular client-server architecture with polling mechanisms
to efficiently handle large volumes of video data. The architecture comprises the following components:

e V2T Server: Performs shot boundary detection and caption generation.
e Client Scripts: Manage job submission, polling for completion, and error handling.

o Text-to-Text (T2T) Server: Enables LLM-based post-processing of captions, including translation, fact
extraction, keyword identification, and more.

Effective coordination across these components is essential for maintaining consistency and performance
throughout the pipeline.

15 Jiawei Wang, Liping Yuan, and Yuchen Zhang, “Tarsier: Recipes for Training and Evaluating Large Video Description
Models” (arXiv, 2024), https://doi.org/10.48550/arXiv.2407.00634.
16 pan Zhang et al., “InternLM-XComposer-2.5: A Versatile Large Vision Language Model Supporting Long-Contextual Input
and Output,” 2024, http://arxiv.org/abs/2407.03320.
17 Kunchang Li et al., “MVBench: A Comprehensive Multi-Modal Video Understanding Benchmark,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.
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3.2.3 V2T server

The V2T server provides two primary functions: shot boundary detection and video captioning. To address
hardware and context length constraints, long videos are segmented into shots. The resulting clips are then
individually captioned using a V2T model with a specific prompt.

For captioning, we selected the open-source InternLM-XComposer 2.5 model over Tarsier and VideoLLaMA?2,
based on experiments done in the FAIRmedia project’®. These advantages include better accuracy,
responsiveness to prompts, support for long contexts and high-resolution video, and reasonable in-video text
recognition.

The recommended default prompt is “Describe the following in detail with a word limit of 50 words.” This
generates natural-language descriptions in English for each clip. Alternatively, the model can be prompted to
produce concise single-sentence captions or to focus on specific aspects of the video, depending on the desired
output. The audio track may optionally be removed if the aim is to focus on visual content only.

The dockerized service accepts video input via direct upload or URL, including MinlO support, and manages
separate queues for shot detection and captioning. Configuration options such as logging are available via an
environment file. An example response is shown below:

{

"success": true,
"data": {
"collective_id": "CID8b82e4a96aecffe2fb28ffcfb5735c10",
"status": "complete",
"is_complete": true,
"file_name": "test.mp4",
"file_size": "2.63 MB",
"video_duration_s": 19.52,
"timestamp": "2025-06-23T15:07:47.938618+00:00",
"jobs": [
{
"status": "complete",
"job_id": "4d145276365ed9beb3b6fc73ac5fb388",
"collective_id": "CID8b82e4a96aecffe2fb28ffcfb5735c10",
"file_name": "test.mp4",
"use_audio": false,
"video_duration_s": 19.52,
"file_size": "2.63 MB",

"prompt": "Describe the following in detail with a word limit of 50 words.",
"model_name": "internlm",
"caption"”: "A group of tourists ... exploration.”,

"inference_time_s": 24.522,

"clip_duration_s": 16.48,

"clip_pos": 0o,

"clip_start_s": 0.0,

"clip_end_s": 16.48,

"timestamp": "2025-06-23T15:08:59.858970+00:00"

"status": "complete",
"job_id": "30ad1f3c@3d0ad7f0418d606f53d7595",

18 https://www.joanneum.at/digital/en/projects/fairmedia/
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"collective_id": "CID8b82e4a96aecffe2fb28ffcfb5735c10",
"file_name": "test.mp4",

"use_audio": false,

"video_duration_s": 19.52,

"file_size": "2.63 MB",

"prompt": "Describe the following in detail with a word limit of 50 words.",
"model_name": "internlm",
"caption": "A serene lake ... landscape.",

"inference_time_s": 8.647,
"clip_duration_s": 3.04,
"clip_pos": 1,
"clip_start_s": 16.48,
"clip_end_s": 19.52,
"timestamp": "2025-06-23T15:09:09.244173+00:00"
}
]
¥
"message": "Collective status retrieved."

}

3.2.4 V2T client

The client script for the V2T server manages the submission and polling of video processing jobs. It supports
batch processing of videos provided either as local files or URL lists. To ensure robust operation, the script detects
and handles potential issues arising from variations in video size, format, or orientation, which could otherwise
lead to server-side errors such as memory overflows.

Upon completion, the script generates a tab-separated values (TSV) file for each truncated video clip. Each entry
includes the generated caption, clip start and end times, and the clip’s position within the original video.

A TSV example for multiple videos is shown below:

"file_name" "clip_pos" "clip_start_s" "clip_end_s" "caption"
"test.mp4" "0" "0.0" "16.48" "A group of tourists ... exploration."
"test.mp4" "1" "16.48" "19.52" "A serene lake ... landscape."
"test2.mp4g" "e" "3.72" "125.731" "The next video ... ends."
"test2.mp4"” " o o "

3.2.5 T2T server

Post-processing of video captions enables the generation of textual descriptions in different languages or formats
after the initial extraction of relevant information in English via optimized prompts to the V2T server. To support
this, we developed a separate text-to-text (T2T) service—a general-purpose module built on large language
models (LLMs), such as LLaMA 3.1-8B-Instruct. The T2T service facilitates various tasks, including translation (see
Table 2), fact or keyword extraction, the combination of multiple text sources, and more.

The service supports higher-level abstractions through LLM Chains, where outputs from one step can serve as
inputs for subsequent steps. This enables complex applications, such as a two-step LLM-based text
correspondence measure.
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Following the V2T architecture, the T2T service employs a server-client model with polling. Model configurations,
system/user prompts, and parameters are fully customizable. For LLM Chains, step dependencies and parsing
for specific textual formats (e.g., JSON, Python dictionaries) can be configured using conventional methods or
prompt-based syntax correction. Consistent with the V2T service, each atomic LLM call is logged and registered,
enabling full traceability of dependent operations.

An example T2T response for fact extraction is shown below:

{
"success": true,
"data": {
"job": {
"status": "complete",
"job_id": "c338b8eea5eaB80d0260660ce79e021b8",
"collective_id": "VAL54c47d590104e58e727cldd2e7af0700",
"model_key": "llama31_8B",
"prompt_key": "facts-extraction",
"text_inputs": {
"textl": "A group of tourists ... exploration."
1
"output_text": "{\"facts\": [{\"fact_index\": 1, \"fact\": \"A group of tourists gathers at the entrance
of MUTITJULU.\"}, ... 1}",
"timestamp": "2025-06-23T15:31:28.946128+00:00",
"inference_time_s": 26.804
}
¥
"message": "Job status retrieved."
}

The corresponding prompt used for this task is:

prompt_key: "facts-extraction",
system_prompt: "You are a helpful AI Assistant.",
user_prompt: "Bellow is a description of a video clip:\nVideo Description: {textl}\n\nExtract key facts from
the above video description paragraph.\n \

- Each fact should contain a subject, predicate, and object. Optionally include context such as time,
place, and causality when relevant (e.g., where, when, why an action occurs).\n \

- Ensure facts capture modalities (e.g., 'could', 'might'), negations, and quantifiers (e.g., 'all’,
‘some') if present in the video description.\n \

- Facts should be atomic, meaning that they cannot be further split into multiple simpler facts.\n \

- Pronouns must be substituted by the corresponding nouns.\n \

- Avoid redundant or overlapping facts, ensuring each fact is unique.\n \

- Scene cuts, camera motions, and purely technical details are NOT facts, but gestures, facial expressions,
and actions that carry meaning ARE facts.\n \

- Implicit aspects such as 'The video starts.' or 'The video ends.' are NOT facts.\n \

- The number of facts extracted should dynamically depend on the complexity of the video description.
Extract as many key facts as necessary to fully capture the relevant information.\n\n \

Please generate the response in the form of a Python dictionary string with keys \"facts\". Each fact must
include its index in the format:\n \

{\n \

\"fact_index\": index_number, \"fact\": \"copy the fact here\"\n \

F\n\n \

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the VALID Python dictionary string.\nFor
example, your response should look like this: {{'facts': [{{'fact_index': 1, 'fact': 'Fact 1 description.'}},
{{'fact_index': 2, 'fact': 'Fact 2 description.'}}, ...]1}}",
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3.2.6 Example results

The following presents the results of applying the V2T pipeline to a test case involving the artificial concatenation
of two independent video shots from the Wiener Video Rekorder®® collection. The pipeline correctly identifies
and segments them and subsequently generates detailed descriptions for each.

To illustrate the translation capabilities of the T2T service, an example output is also provided in Spanish.
Additionally, extracted facts are presented to demonstrate post-processing functionality.

Table 2: Example test video with shot keyframes, V2T generated captions, and corresponding Spanish translations.

MUTITUULU

T ASSST son CONSERVATION
BEASRES wiTew T AREA

Describe the following in detail with a word limit of 50

A group of tourists gathers around a signpost at the
entrance of MUTITJULU, a natural landmark. They are
dressed in casual attire suitable for outdoor
activities, with some wearing hats for sun protection.
The signpost, made of wood, bears the name of the
location and advises visitors to follow walking tracks
to aid soil conservation. The surrounding landscape is
arid, with sparse vegetation and rocky terrain,
indicative of a desert or semi-desert environment. The
sky is clear, suggesting favorable weather conditions
for outdoor exploration. (84 words)

Un grupo de turistas se reune alrededor de un poste

indicador en la entrada de MUTITJULU, un lugar natural.

Estan vestidos con ropa casual adecuada para
actividades al aire libre, y algunos llevan sombreros
para protegerse del sol. El1 poste indicador, hecho de
madera, lleva el nombre del lugar y aconseja a los
visitantes que sigan los senderos para ayudar a la
conservacién del suelo. El paisaje circundante es
arido, con una vegetacidén escasa y un terreno rocoso,
indicativo de un desierto o un entorno semi-desértico.
El cielo esta despejado, lo que sugiere condiciones
climaticas favorables para la exploracidén al aire
libre.

19 https://www.mediathek.at/wiener-videorekorder/english-information

words.

A serene lake nestled in a
rugged mountainous area,
with a single sailboat
gently floating on the calm
waters. The surrounding
cliffs are adorned with
patches of greenery, and
the sunlight bathes the
scene in a warm glow,
highlighting the natural
beauty of the landscape.
(19 words)

Un lago sereno se encuentra
en una zona montafiosa
abrupta, con un solo barco
a vela flotando suavemente
en las aguas tranquilas.
Las rocas circundantes
estan adornadas con parches
de vegetacién, y la luz
solar bafna la escena con
una calida luz, resaltando
la belleza natural del
paisaje.

XReco is an HorizonEurope Innovation Project co-financed by the EC under Grant Agreement ID: 101070250.
The content of this document is © the author(s). For further information, visit xreco.eu.

26


https://www.mediathek.at/wiener-videorekorder/english-information

XReco Project — Grant ID 101070250 D4.2 // XR & Media Transformation Services v2

Extracted facts for SHOT1:

A group of tourists gathers at the entrance of MUTITJULU.

The tourists are dressed in casual attire suitable for outdoor activities.

Some tourists are wearing hats for sun protection.

The signpost is made of wood.

The signpost bears the name of the location MUTITJULU.

The signpost advises visitors to follow walking tracks.

The signpost advises visitors to follow walking tracks to aid soil conservation.
The surrounding landscape is arid.

The surrounding landscape has sparse vegetation.

The surrounding landscape has rocky terrain.

The surrounding landscape is indicative of a desert or semi-desert environment.
The sky is clear.

The clear sky suggests favourable weather conditions for outdoor exploration.

3.3 Novel content detection in news

Determining whether a document is novel or contains some novel parts w.r.t. another document can be seen as
a problem of comparing embeddings, as question answering between the documents, or as checking claims
extracted from one document vs. another or a collection. NN-based novelty detection on document level can be
approached using sentence embeddings in a vector space. As this may not fully capture semantics of the whole
documents, this is complemented with attention to determine document-level novelty?®. A dataset for testing
entailment of propositions has been provided?!, and the authors test on baseline approaches, including seq2seq,
BERT embeddings and question answering.

Framing the novelty detection problem within a question-answering paradigm effectively leverages recent
advancement in LLMs and QA systems. The Peak across®? methodology exemplifies this approach, utilising
question extraction from a source document to identify cross-document relationships within a collection. This
technique builds upon two established foundations: The Qasem method for extracting question-answer pairs
from unstructured text®® and advanced contextualisation techniques? for refined question formulation. The

20 Ghosal, Tirthankar, et al. "Is your document novel? Let attention guide you. An attention-based model for document-level
novelty detection." Natural Language Engineering 27.4 (2021): 427-454.
21S, Chen, H. Li, Q. Wang, Z. Zhao, M. Sun, X. Zhu, and J. Liu, “Vast: A vision-audio-subtitle-text omni-modality foundation
model and dataset,” Advances in Neural Information Processing Systems, vol. 36, pp. 72 842-72 866, 2023.
22 Caciularu, Avi, et al. "Peek Across: Improving Multi-Document Modeling via Cross-Document Question-Answering." The
61st Annual Meeting of the Association for Computational Linguistics (2023).
2 Klein, Ayal, et al. "QASem Parsing: Text-to-text Modeling of QA-based Semantics." Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. 2022.
24 pyatkin, Valentina, et al. "Asking It All: Generating Contextualized Questions for any Semantic Role." Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing. 2021.
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implementation involves pretraining a multi-document model (QAMDen) on the NewsHead dataset?®, and task-
specific fine-tuning for targeted question-answering applications. Beyond this core methodology, supplementary
QA frameworks demonstrate versatility by enabling multi-step reasoning chains for comprehensive verification?®
and conducting gap analysis between generated answers and reference materials to identify information

deficiencies?’.

A claim-based methodology identifies novel content by extracting assertions from a document and verifying
them against reference sources. Current LLM-driven verification strategies — surveyed comprehensively?® —
encompass evidence retrieval from corpora, prompt engineering for optimised verification, transfer learning for
domain adaptation, or evidence sentence generation. Notable implementations include Kao et al.’s end-to-end
framework?®, multi-step prompting for enhanced verification accuracy®, and DistilFEVERen, RAI’s fine-tuned
DistIBERT®! model for claim refutation (English/Italian). A critical limitation persists: these approaches
presuppose pre-extracted claims, lacking integrated methods for automated claim extraction from source
documents.

Due to advances in LLMs and synergies with other tasks, we changed our original plan to base the approach on
question answering but decided to post it as a problem of analysing overlapping facts.

The basic idea of the metric is to extract single sentence statements contained in a text T* (“facts”) and check
them against another text Tj,. We then investigate two approaches for comparing them: one is similar to the
approach used in claim checking/refutation, while the other directly applies an LLM for labelling facts as novel.
The fact extraction is model M., (T) — F, where F is the set of facts, F = {fy,..., f} is implemented as a
prompt for an LLM. The LLM is prompted to identify atomic factual statements from paragraph-length input.
Extracted facts must be self-contained, including subject, predicate, and object, and must retain linguistic
modifiers such as modality, negation, and quantification.

The system uses the Llama 3.1 8B3*** model with deterministic hyperparameters and a high token limit to
preserve context integrity. Smaller models (e.g., 3B variants) showed deficiencies in meaningful fact extraction.

25 Gu, Xiaotao, et al. "Generating representative headlines for news stories." Proceedings of The Web Conference 2020.
2020.
26 R. Aly, M. Strong, and A. Vlachos, “Qa-natver: Question answering for natural logic-based fact verification,” in The 2023
Conference on Empirical Methods in Natural Language Processing, 2023.
27 R. Rabin, A. Djerbetian, R. Engelberg, L. Hackmon, G. Elidan, R. Tsarfaty, and A. Globerson, “Covering uncommon ground:
Gap-focused question generation for answer assessment,” in The 61st Annual Meeting Of The Association For
Computational Linguistics, 2023.
28 A, Dmonte, R. Oruche, M. Zampieri, P. Calyam, and |. Augenstein, “Claim verification in the age of large language models:
A survey,” arXiv preprint arXiv:2408.14317, 2024.
2 W.-Y. Kao and A.-Z. Yen, “How we refute claims: Automatic fact-checking through flaw identification and explanation,” in
Companion Proceedings of the ACM Web Conference 2024, 2024, pp. 758-761.
30 . Zhang and W. Gao, “Towards lim-based fact verification on news claims with a hierarchical step-by-step prompting
method,” arXiv preprint arXiv:2310.00305, 2023.
31 sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108.
32 A, Grattafiori and et al., “The llama 3 herd of models,” 2024. Available: https://arxiv.org/abs/2407.21783
33 https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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Prompts were iteratively refined for robustness; the final versions are documented in the GitHub repository of
the dataset.

3.3.1 Fact entailment or contradiction

Given the facts extracted F*, text T, may support these facts (entailment), be in conflict with them
(contradiction), or not contain information related to this statement (neutral). The checking model M., (T, F) —
(E,C,N), where E, C and N are binary vectors of size [, encodes for each fact whether it is considered entailed,
contradicting or neutral |E|+ [C|+ [N| =1, where || denotes the L; norm. We thus obtain (Er_r,,

CT—>TkNT—> Tk) = M (Ty, Mfex (T7)).

Facts that are entailed in either matching direction are clearly not novel. Facts contained in the text T from the
collection and found to be neutral are prior knowledge not related to the new text, and thus also not novel.
Novelty is thus based on the neutral facts in the new text (as no related information could be found in the text
from the collection), and contradicting facts in both directions (as a contradiction implies new information):

_ANpor ]+ Croor, | + [Cror

Vg I* + |CTk—>T*

The checking model is also implemented as a prompt for Llama 3.1 8B. Each fact is evaluated for entailment,
contradiction, or neutrality with respect to a comparison paragraph. This step is performed collectively: the
entire fact set is assessed against the full reference or hypothesis text, rather than individually. If parsing fails
due to syntactic inconsistencies, an auxiliary LLM call attempts structural correction. Manual inspection was
occasionally needed for edge cases, such as removing spurious quotation marks around named entities.

In order to obtain an aggregated score for the collection of text, we consider facts that are either supported by
all texts in the collection, or that contradict at least one text within it.

n
-1
Ny = n Nreor,
k=1
n
1
Cr = Zz CT*—>Tk
k=1

=1~ [NT*_’TRJ] + Zjr [CT*_)T’(J'] + %ZLJCTPT*

1
L+ EZZ=1|CT,(—>T*
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3.3.2 Fact novelty

The alternative approach is to define a novelty model M,,,,,(T, F) — (K, U) where K and U are binary vectors of
size 1, encoding for each fact whether it is considered known or unknown (|K| + |U| = ). We thus obtain

(KT_)TR, UT_)TR) = Myou (T, Mpex (T™)). The checking model is also implemented as a prompt for Llama 3.1 8B.

We determine the pairwise novelty as the maximum of the fraction of novel facts in both directions:

U*] Uy
L,

v, = max (

The aggregation over the collection considers whether a fact is found to be novel to all texts in the collection,
i.e.

We first provide results on the stability of o

Direction
the fact extraction and matching approach, et ren)
based on work and a dataset (FM-V2T) from 0 = ConTtereh
the FAIRmedia project®. In order to assess

the reliability of the metric, we test the
metric on self-matching the references in 0e
the FM-V2T dataset. This should result in
entailment close to 1, and contradictions
close to 0. We perform the experiment . __Jl_ __JL
twice, matching forward and backward, in

order to test the reproducibility of the

models. In addition, we repeat the same Figure 1: Bidirectional validation of LLM metric for entailment (ENT, green) and
. . . contradiction (CONT, red): Across matching direction (left/right part of each
experiment with self-matching the output subplot), as well as across the (a) reference-against-reference and (b) InternLM-
of InternLM-XComposer-2.5%> on the FM- to-InternLM6 output.

V2T dataset. Figure 1 shows the results,

indicating that the metric is very reliable in terms of contradictions, which are almost 0. The rate of entailments
is very high, though with more outliers, i.e. captions resulting in lower entailment rates. This means that support
for some extracted statements could not be verified, and they are thus considered neutral. We also match the

value

02

Ref2Ref InternLM2InternLM

34 https://www.joanneum.at/digital/en/projects/fairmedia/

35 pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong Duan, Bin Wang, Linke
Ouyang, et al. 2024. Internlm-xcomposer-2.5: A versatile large vision language model supporting long-contextual input and
output. arXiv preprint arXiv:2407.03320 (2024).
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InternLM?* video-to-text model output against itself, which turns out to be even more reliable, with a lower
number of outliers. This is probably due to simpler and shorter nature of the outputs compared to the references.

There are few multimedia datasets which are suitable for the task. We identified the FIVR200K dataset>®, created
by the H2020 InVID project®, as a relevant one. It is a collection of YouTube videos related to different news
events. For parts of the dataset, annotations of four categories of relations between videos are provided: near
duplicate video(i.e., at least one scene overlaps), , duplicate scene videos (i.e., all scenes overlap) complementary
scene videos (i.e., capturing the same scene of the event, but with complementary content), and incident scene
videos (i.e., related to the same scene, but not capturing overlapping content). Unfortunately, not all of the
videos are still available on Youtube, and if one video used in an annotated pair is not available, this makes the
pair unusable.

3.4 News content tagging

NewsTagger is a service developed for automatically tagging news content. It is a fine-tuned variant of Llama-
3.1-8B-Instruct® (open-sourced and developed by Meta), adapted specifically for the task of assigning a set of
semantically meaningful tags to news articles. It is useful for supporting downstream tasks such as content
indexing, retrieval, and thematic categorization in a scalable and domain-adaptable manner.

This component relates to the requirements FR.4.2 (“The Neural Media Repository MUST enable efficient
context-based search and retrieval”), FR.57.2 (“The Data Sharing Platform MUST provide the functionality to
provide content-based and source-based filtering”), and FR.180.1 “The Data Sharing Platform MUST provide the
possibility of applying a tag (or a label) to a newly created asset” of the XReco system.

Recent advances in NLP, especially with the rise of LLMs, have fundamentally changed how text classification
and annotation tasks are approached. LLMs, pre-trained on vast multilingual datasets and fine-tuned for specific
applications, now deliver strong results across tasks such as summarisation, headline generation, and tagging.

In the media and journalism domain, research shows that while large, resource-intensive models can achieve
high performance for tasks like automatic headline generation®®, smaller models — when fine-tuned for a
particular task — can match the results of their larger counterparts®. This insight underpins our NewsTagger
approach, which leverages fine-tuned, smaller LLMs to automatically assign semantic tags to news articles.
Tagging, much like headline generation, requires a deep semantic understanding of the text, but does not always
need the full general-purpose capabilities of the largest models.

36 G. Kordopatis-Zilos, S. Papadopoulos, |. Patras, and |. Kompatsiaris, “FIVR: Fine-grained incident video retrieval,” IEEE
Transactions on Multimedia, vol. 21, no. 10, pp. 2638-2652, 2019.

37 https://cordis.europa.eu/project/id/687786

38 https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct (last accessed May 29", 2025)

¥ @u, X., Mao, Y., Han, J., Liu, J., Wu, Y., Yu, C., Finnie, D., Yu, H., Zhai, J. and Zukoski, N. Generating representative
headlines for news stories. In: Proceedings of The Web Conference 2020, 2020, pp. 1773-1784.

40 Scotta, Stefano and Alberto Messina. Experimenting task-specific LLMs. In: Proceedings of the Seventh Workshop on
Natural Language for Artificial Intelligence (NL4Al 2023) co-located with the 22nd International Conference of the Italian
Association for Artificial Intelligence (AI*IA 2023). 2023.
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Building on prior work in headline generation, NewsTagger adapts these methods for multilingual semantic
tagging, evaluating whether fine-tuned, compact LLMs can serve as efficient alternatives to massive, general-
purpose models. By targeting real-world media content in languages such as ltalian, English, Slovenian, and
German, NewsTagger also contributes to the underexplored area of multilingual, domain-specific LLM
applications. Thanks to the instruction-following and multilingual strengths of models like Llama-3.1-8B-Instruct,
a single fine-tuning process can yield a tagging system that generalises across languages, reducing the need for
separate models and making the approach both efficient and scalable.

3.4.1 Model fine-tuning procedure

To fine tune the base model Llama-3.1-8B-Instruct, we collected a dataset from publicly accessible RSS feeds in
the four languages considered, filtering those with either no text or no tags, and spanning from January 2023 to
July 2024. The resultant dataset totalled approximately 31,000 RSS items, with about 11,000, 9,000, 10,000, and
1,000 for Italian, German, English, and Slovenian, respectively.

The fine-tuning process of the base model Llama-3.1-8B-Instruct was performed after the 8-bit quantization of
the model using the LoRA technique to enable efficient training of low-rank adapters, significantly reducing
memory and computational requirements while preserving model performance.* The whole fine-tuning process
took approximately 60 hours of training on an on-premises NVIDIA A40 40GB GPU. The prompts fed to the model
are detailed in Annex | - Section 11.1.

3.4.2 Experimental results

In this section, we present an analysis of the performance of the fine-tuned NewsTagger model. We compare it
against three different models: gpt4-0*? from OpenAl, which is one of the best commercial models available,
Llama-3.1-70B-Instruct®®, which is the best model of the LLama 3.1 generation, and Llama-3.1-8B-Instruct, which
is the base model of the NewsTagger, to check the improvements made by the fine-tuning process.

All models, including the NewsTagger, were appropriately prompted to assign semantic tags to the RSS items.
The quality of the tags generated by each model was then evaluated against the ground truth, i.e., tags assigned
by professionals, as originally posted in published RSS feeds. The analysis was conducted on a test set of 5,069
RSS items, comprising 1,485 in Italian, 1,500 in German, 1,500 in English, and 584 in Slovenian. These RSS items
were collected from the same sources that were used for the training, but they were published after July 2024.
This allowed us to test the model's ability to generalise to unseen, real-world data outside of the fine-tuning
dataset. The quality of the tags generated by the models was evaluated according to the following measures:

Intersection over Union (IoU): defined, for each RSS item and model, as the number of tags generated by the
model that are also present in the ground truth, over the total number of unique tags from both the model and
the ground truth. Formally, fixed a model, let M be the set of tags generated by the model and G the set of
ground truth tags, the Intersection over Union is defined as:

41 Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L. and Chen, W., 2022. Lora: Low-rank adaptation of large
language models. ICLR, 1(2)

42 https://openai.com/index/hello-gpt-40/ (last accessed May 30, 2025)

4 https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct (last accessed May 30%", 2025)
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For example, if the ground truth tags for an RSS item are {x, y, z}, and the model generates {x, y, w}, then [oU =
0.5.

Average Semantic Similarity (S): this quantity measures the average semantic similarity between the list of
generated tags and the list of ground truth tags. For each RSS item and model, let M be the list of generated tags
and G the list of ground truth tags. We build a similarity matrix @, where the rows correspond to the tags in M
and the columns to the tags in G. The element on the i-th row and j-th column of @ is given by the Cosine
Similarity of the embeddings, computed using the sentence transformer model all-MiniLM-L6-v2*, of the i-th
tag in M and of the j-th in G. The average semantic similarity measure is defined as:

1
S = E(Srow + Scor)s
where Sy, and S.,; are the mean value of the maximum values of each row and each column of @, respectively.

Figure 2 and Figure 3 show the average values of the previously defined metrics on the test set, respectively. For
each model, the averages were computed both per language and over the entire test set, regardless of the
language of the RSS items. The results clearly demonstrate the effectiveness of the NewsTagger model. Both in
terms of S and IoU, the NewsTagger outperforms all the alternative models considered, demonstrating that
domain-specific fine-tuning, even on smaller language models, is a viable alternative to relying on
larger/expensive LLMs.
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Figure 2: Average loU over the tags generated by each model for the RSS items in the test set, for individual languages (ita, eng, ger, slo)
and aggregated (total).

4 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 (last accessed May 30, 2025)
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Figure 3: Average S value over the tags generated by each model for the RSS items in the test set for individual languages (ita, eng, ger,
slo) and aggregated (total).

The main limitation of this analysis lies in the fact that the only ground truth available is the set of tags assigned
by the publishers of the RSS feeds. This does not exclude the possibility that, in some cases, the tags generated
by one of the models may be as good as - or even better (i.e., more informative) than - the original ones.
Therefore, the conclusion should highlight not that NewsTagger’s tags are necessarily better than those of the
other models, but rather that they are more similar to the reference tags assigned by journalists.

3.4.3 Deployment and integration in the XReco platform

The NewsTagger service is packaged and distributed as a Docker image and runs as a container on a Docker host.
The service is exposed through REST APl implemented using the FastAPI framework® and served using Uvicorn.*®
The generation of tags is invoked by NMR by calling the /tags endpoint of the NewsTagger service. Given an item
uploaded to the platform, such as a news article, an image, a video or a 3D model, the tags are generated
combining the title, the subtitle and the description of the uploaded item. It is not mandatory to specify all three,
but at least one of them.

3.5 Mixed Reality User Interface

As the boundaries between physical and digital environments continue to blur, creating seamless workflows for
multimedia retrieval and content authoring in Mixed Reality (MR) is becoming increasingly essential. To address
this, we have developed a Mixed Reality Multimedia Retrieval Smartphone App that bridges intuitive, real-world
interactions with content search on mobile devices.

This app is adapted from our earlier prototype (MR)? and has been extended and tailored to match the
technological infrastructure and requirements of the XReco project”. It enables mobile users to capture their

% https://fastapi.tiangolo.com/ (last accessed May 30", 2025)
4 https://www.uvicorn.org/ (last accessed May 30, 2025)
47 https://xreco.eu/mixed-reality-user-interface/
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environment, perform contextual queries, and retrieve reusable media assets in real time. The app is designed
for tight integration with authoring environments, especially the Unity-based ZAUBAR Authoring Tool, enabling
direct content flow from the physical world into XR experience design.

3.5.1 App Functionality

The Mixed Reality Multimedia Retrieval Smartphone App supports multiple query modalities and live interaction
features:

e Live object detection using integrated YOLOv12 models*® to enable context-aware, real-world object-
based querying.

e Manual region selection for visual queries within the live camera feed that extend a single detected
object.

e Text queries entered by the user are processed as full-text search queries, similar to those sent from the
XReco Marketplace.

e Visual result presentation in a scrollable grid or as an augmented overlay, enabling instant browsing and
reuse.

All queries are executed in real-time. Depending on the modality, features are extracted either directly on the
device or through backend services and matched against collections utilising the NMR-backend.

3.5.2 Placement in XReco stack

The app enables multimodal queries based on object detection, region selection, or text input, which are sent to
the NMR-backend for similarity-based multimedia retrieval. All query modalities provided in the Marketplace are
available in the smartphone app. Query features are processed and matched using a PostgreSQL database with
pgVector®. The results are returned to the mobile interface and can be exported directly to the Unity-based
ZAUBAR Authoring Tool. The architecture supports that content ingested via the orchestrator also becomes
directly available for the MR search.

The architecture and the connection to other XReco services is visible in Figure 4.

4 Tian, Y., Ye, Q., & Doermann, D. (2025). Yolov12: Attention-centric real-time object detectors. arXiv preprint
arXiv:2502.12524.
4 https://github.com/pgvector/pgvector
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Figure 4: System architecture of the Mixed Reality Multimedia Retrieval smartphone app integrated into the XReco platform.

3.5.3 Backend Infrastructure

The app communicates with the NMR-backend, reusing the same API endpoints employed by the Marketplace
within XReco, thereby ensuring full compatibility with existing pipelines.
Key backend features include:
e An additional endpoint for similarity search based on captured images, supporting object-based queries
from the live retrieval interface.
e Feature extraction services powered by CLIP, enabling robust cross-modal queries across images and
text.
e A pgVector-enhanced PostgreSQL database, allowing for efficient and scalable similarity search across
large collections.
e Optional integration with third-party services, such as:
o Object detection models (e.g., from JRS and i2Cat)
o Landmark recognition systems
o Cross-modal descriptor providers (e.g., CERTH)
e All descriptor handling and result ranking is managed via the NRM-backend built upon vitrivr-engine.

3.5.4 Integration into XReco via ZAUBAR Authoring Tool

To fully support content reuse and authoring workflows, the smartphone app is integrated with the ZAUBAR
Authoring Tool, a Unity-based content creation platform.
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This integration enables a bidirectional workflow:

e From authoring to retrieval: The authoring tool can directly launch the smartphone app, allowing content
creators to perform mobile retrieval sessions in the field.

e From retrieval to authoring: Users can select assets from search results and send them back to the Unity
authoring interface, where they are embedded as linkable, reusable objects (via URL-based asset
references).

This integration supports a mobile-first authoring approach: creators are no longer limited to curating content
from office desktops but can instead collect, retrieve, and reuse material live on location, making XR experience
creation faster and easily connected to the physical context.

4 Scene Reconstruction Services

This section presents the core 3D reconstruction technologies developed within XReco, encompassing both
neural rendering approaches and more traditional computer vision methodologies. These services have evolved
significantly from their initial implementations in D4.1, now achieving production-ready status with enhanced
performance, quality and integration capabilities.

4.1 Neural Rendering

4.1.1 Fast NeRF in-the-wild

Building upon the foundational work established in D4.1, where an adapted version of NeRF-in-the-wild
(NeRFw)*® was implemented, this deliverable presents significant advancements designed to enhance both
performance and reconstruction quality in unconstrained, real-world scenarios. These improvements directly
address the slow training convergence limitations of NeRFw identified in the previous deliverable.

To overcome these challenges, D4.2 introduces two major architectural enhancements: a hierarchical octree
feature volume representation for improved spatial efficiency, and an advanced appearance and transient object
handling mechanism inspired by Hallucinated-NeRF (HA-NeRF)*!. These innovations collectively enable faster
convergence while maintaining high-quality reconstruction capabilities for practical deployment within the
XReco ecosystem. An overview of our pipeline is presented in Figure 5: Fast NeRF in-the-wild pipeline.Figure 5.

50 Martin-Brualla, R., Radwan, N., Sajjadi, M. S., Barron, J. T., Dosovitskiy, A., & Duckworth, D. (2021). Nerf in the wild: Neural
radiance fields for unconstrained photo collections. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (pp. 7210-7219).
51 Chen, X., Zhang, Q,, Li, X., Chen, Y., Feng, Y., Wang, X., & Wang, J. (2022). Hallucinated neural radiance fields in the wild.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12943-12952).
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Figure 5: Fast NeRF in-the-wild pipeline.

Octree feature volume: To optimise spatial sampling and drastically reduce computational overhead, we
implemented our approach utilising an octree-based spatial data structure. An octree efficiently represents
sparse volumetric scenes by allocating high resolution information only where needed (i.e., in areas with
significant scene detail). This approach reduces unnecessary computation in empty or uniform regions, leading
to improved rendering and training performance. The use of the octree structure is particularly valuable in the
XReco context, where large, aggregated datasets from multiple sources must be processed efficiently. Kaolin’s>?
integration with PyTorch allowed for seamless integration with our previously developed pipelines, resulting in
a system that significantly improves memory usage and rendering times while maintaining high reconstruction
quality.

Integration of appearance and transient embeddings from Ha-NeRF: While D4.1 leveraged NeRFw-style
appearance and transient embeddings, our current implementation adopts a more robust mechanism to better
disentangle scene geometry from variable appearance and transient phenomena. The NeRFw approach is limited
as it requires optimising embeddings for every training image, hindering its ability to generalise to novel, unseen
image samples. Ha-NeRF overcomes this with two key components:

e A convolutional encoder which learns a disentangled appearance representation, mapping each input
image to a latent vector that captures its appearance due to different illumination. This architecture
allows the model to render the scene with appearances from images outside the original training set,
enabling true appearance interpolation. To ensure the appearance is fully separated from scene
geometry, a view-consistent loss prevents geometric details from being encoded into the appearance
vector.

e Instead of modelling transient objects with a computationally expensive 3D field as in NeRFw, HA-NeRF
utilises a streamlined 2D visibility map. This map, modelled by an implicit function (via an MLP), predicts
the probability that each pixel belongs to the static background versus the transient foreground. It is

52 https://developer.nvidia.com/kaolin
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trained in an unsupervised manner, which effectively learns to separate the static scene from dynamic
elements, resulting in cleaner reconstructions.

These advancements in appearance disentanglement and transient handling further align our NeRF pipeline with
XReco's broader goals of unified, cross-repository content aggregation and semantic search in 3D environments.

4.1.1.1 Results and observations

To validate the performance of our enhanced NeRF pipeline, we conducted a series of experiments comparing
our method against the mentioned baselines for in-the-wild scene reconstruction: NeRFw and Ha-NeRF. The
evaluation focuses on two primary aspects: reconstruction quality, measured by standard image-based metrics,
and computational efficiency, measured by total training time.

Experimental Setup: The evaluation was performed on the Phototourism dataset®3, which is used widely in the
literature in relevant tasks. It includes four scenes, Brandenburg Gate, Trevi Fountain, Taj Mahal, and Sacre
Coeur, which are characterised by significant variations in lighting, camera parameters, and transient occluders.

Metrics: We use three standard image-based metrics to assess reconstruction quality via rendering: PSNR, SSIM,
and LPIPS.

Energy efficiency: For a training run of 300,000 iterations, our method consumed 2.59 kWh. In comparison,
NeRFw and Ha-NeRF methods consumed 9.75 kWh and 7.71 kWh, respectively. Fast-NeRF in-the-wild
demonstrates a significant improvement in energy efficiency, consuming roughly one-third of the GPU power
required by comparable techniques.

Implementation details: Our model was trained on an NVIDIA A10G 24GB GPU running on AWS g5.4xlarge EC2
instances. The core architecture integrates the octree representation with the appearance and transient
modelling components from HA-NeRF, as described above. The quantitative results, summarized in Table 3,
demonstrate that our method achieves a significant improvement in computational efficiency without
compromising reconstruction quality.

Table 3: Quantitative results comparing different NeRF-in-the-wild methodologies on the Phototourism dataset.

PSNRT SSIM4 LPIPSJy, PSNRM SSIMM LPIPSy PSNR1 SSIM4P LPIPSy PSNRP SSIMP  LPIPSY
20.04 0.887 0.139 20.02 0.801 0.171 20.18 0.69 0.222 20.84 0.826 0.249
23.45 0.811 0.247 25.4 0.87 0.124 22.15 0.69 0.117 22.72 0.767 0.301
23.15 0.902 0.238 22.23 0.77 0.165 23.39 0.77 0.241 25.73 0.849 0.163

As shown Table 3, our method delivers PSNR, LPIPS and SSIM scores that are on par with, or superior to, both
NeRF-w and HA-NeRF. This confirms that the integration of the octree structure does not negatively impact the
model's ability to reconstruct scenes with high fidelity. The most significant result is the dramatic reduction in
training time. By leveraging an octree to focus computation only on occupied space, our method converges 8
times faster than the baselines. We ran these experiments in the same machine for 300k iterations each. While

3 Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: exploring photo collections in 3D. In ACM siggraph 2006
papers (pp. 835-846).
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both NeRFw and Ha-NeRF need 48 hours for convergence, our method needs only 6 hours. This rapid
convergence is critical for the XReco project's goal of processing large-scale, multi-source datasets efficiently.

Y

m | ‘ w
@ h
(a) (b)

Figure 6: Qualitative results on Phototourism Brandenburg Gate scene. (a) The original image. (b) The original image with transiency
subtracted. (c) The rendered Octree-based NeRF from the same viewpoint with same appearance. (d) The rendered Octree-based NeRF
from the same viewpoint with a different appearance. (e) The estimated transiency mask.

Qualitative results also underscore the effectiveness of our approach. Figure 6 presents rendered novel views
from the Branderburg Gate scene with different appearances, as well as the estimated transiency mask.

The experimental results validate that our proposed method successfully addresses the primary limitations of
previous in-the-wild NeRF techniques. By combining the hierarchical octree representation for speed with an
advanced architecture for appearance and transient modelling, we have developed a pipeline that is both fast
and robust. The system delivers reconstruction quality on par with the state-of-the-art, while significantly
reducing computational requirements, making it a highly effective and scalable solution for the demands of the
XReco project.

4.1.2 3D Gaussian Splatting

Although Gaussian Splatting® (3DGS) does not constitute a purely neural reconstruction methodology — being
fundamentally a gradient descent optimisation algorithm that optimises Gaussian parameters through multi-
view RGB supervision — it is presented within this section due to its hybrid nature, bridging traditional computer
vision techniques with neural rendering approaches. This classification reflects the method’s integration of
classical optimisation principles with modern differential rendering paradigms and novel 3D representations.

The developed service provides static scene reconstruction using 3DGS, a state-of-the-art technique for high-
fidelity 3D reconstruction from multi-view images or video input. This service is implemented based on the open-

54 Kerbl, B., Kopanas, G., Leimkiihler, T., & Drettakis, G. (2023). 3d gaussian splatting for real-time radiance field rendering.
ACM Trans. Graph., 42(4), 139-1.
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source gsplat® component from the NeRFStudio framework®®, which features a permissive license and delivers
performance on par with the original 3DGS method. Users can upload images or video sequences of static scenes,
which the service processes to produce photorealistic and spatially consistent 3D representations through 3D
Gaussian primitives. Designed with a focus on efficiency, rendering quality, and broad compatibility with
common input formats, this service offers a robust and scalable solution suitable for real-world applications and
deployment.

The 3DGS reconstruction technology addresses diverse industry requirements for accurate 3D scene
reconstruction. In digital heritage, institutions can preserve physical spaces and artefacts with high fidelity from
standard photographs and videos (Figure 7, Figure 8). Architecture and real estate professionals can generate
immersive 3D walkthroughs from visual captures, enhancing design validation and client engagement. The
entertainment industry can reconstruct film sets and locations from footage, supporting virtual production and
VFX workflows. For training applications, realistic 3D environments enable spatially accurate simulation
experiences. Technical advantages include high rendering performance and compact representation, making this
technology particularly valuable for AR/VR applications and on-device visualisation. The system’s accessibility
supports both professional deployment and research experimentation, facilitating rapid iteration across diverse
use cases.

Figure 7: Qualitative results of our 3DGS pipeline on the Einstein Tower footage, captured by DW. (left) A frame from the original video
footage. (right) The corresponding 3DGS render.

55 https://github.com/nerfstudio-project/gsplat
%6 https://github.com/nerfstudio-project/nerfstudio
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Figure 8: Qualitative results from 3DGS on the Einstein Tower footage captured by DW. Two renders from viewpoints outside the original
video footage. Although some artifacts appear (especially at the horizon), the geometry and the level of detail remain consistent.

4.1.2.1 Implementation Overview
The delivered pipeline includes the following steps:

Input Handling: Supports image sequences and video files. Automated camera pose estimation (e.g., via
COLMAP*) is included if external camera parameters are unavailable.

e Data Preprocessing: Frames are extracted, resized, and processed to ensure consistent quality. Camera
intrinsics and extrinsics are validated or inferred.

e Gaussian Splatting Reconstruction: The core reconstruction engine generates a 3D point cloud with per-
point anisotropic Gaussian distributions. These represent colour, opacity, and anisotropic scale, enabling
high-quality rendering.

e Output: The result is a 3D representation viewable within a browser-based viewer or exportable for
integration into downstream applications (e.g., Unity, Unreal Engine).

is asset an image? YES COLMAP
list of assets list of images S 3DGS reconstruction _ply generation
camera calibration

NO

h

extract sharp
keyirames from video

Figure 9: A schematic representation of the 3DGS reconstruction pipeline

The chosen implementation strikes a balance between licensing freedom (Apache License 2.0), performance,
and practical usability, ensuring the reconstruction service can be deployed in a wide range of environments,
including cloud-based and local setups.

57 Schoénberger, J. L., & Frahm, J.-M. (2016). Structure-from-Motion Revisited. Conference on Computer Vision and Pattern
Recognition (CVPR).
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The 3DGS reconstruction service is packaged as a Docker image and deployed as a container on a Docker-
compatible host. It provides a RESTful API built with the FastAPI framework, offering a streamlined and high-
performance interface for client interactions. A job tracking system, implemented using Celery®®, manages
asynchronous reconstruction tasks, allowing clients to monitor job progress and query their status. Upon
completion of a reconstruction task, the system can generate a download link to access the resulting data.

4.1.3 Fast Neural reconstruction in-the-wild

Extracting explicit 3D geometry as textured meshes from unstructured image collections represents a critical
functionality within the XReco platform. While the Fast NeRF in-the-wild service (Section 4.1.1) successfully
renders photorealistic novel views of 3D scenes, this service addresses a complementary requirement by
generating texture mesh outputs that enable direct integration with standard 3D engines such as Unity3D.

A fundamental limitation of NeRF-based methods is that their underlying volume density representation makes
it difficult to extract a precise and continuous surface. While meshes can be extracted from the learned density
field, these often suffer from noise or lack fine detail. To overcome this, this algorithm employs a different neural
representation specifically designed for high-fidelity surface recovery.

b
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Figure 10: Octree based reconstruction in-the-wild pipeline. We ray-trace an octree-based feature volume to propagate features to an
SDF and an RGB MLP. Additionally, the input image is fed into a CNN for estimating a transiency mask. Moreover, we optimise
appearance embeddings to encode the appearance of each image which provide us with the ability to learn an appearance space.

Our Fast Neural Reconstruction in-the-wild pipeline builds upon the methodology introduced in NeuS®. As
depicted in Figure 10, this approach employs a hierarchical network structure comprising three specialised MLPs.
The primary MLP encodes a Signed Distance Function (SDF) representation of the complete neural field, with the
object surface mathematically defined as the zero-level set of this function. The output from this SDF network is

58 https://docs.celeryq.dev/en/latest/index.html
% Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., & Wang, W. (2021). Neus: Learning neural implicit surfaces by volume
rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689.
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subsequently processed by a secondary MLP dedicated to encoding colour information across the neural field. A
tertiary MLP, implementing a NeRF-based architecture, models background elements (non-object regions such
as sky) to ensure complete scene representation.

To maintain photometric consistency, these networks undergo concurrent optimisation through volume
rendering. This integrated training approach ensures that the rendered colour for each ray is precisely
determined by both the surface location (defined by the SDF) and the surface gradient at the ray-surface
intersection point, thereby preserving geometric accuracy.

A significant architectural enhancement, consistent with our Fast NeRF in-the-wild methodology (Section 4.1.1),
incorporates an octree-based feature volume representation. This hierarchical spatial structure delivers
substantial improvements in memory utilisation and computation efficiency. By storing optimised features
within the octree grid as the primary reconstruction information source, the system enables deployment of
considerably more compact MLPs for SDF and colour representation learning. This structural optimisation yields
measurable reductions in training duration while simultaneously decreasing energy consumption requirements.

Appearance modelling: In this pipeline, we follow NeRFw, introducing per-image appearance embeddings to
account for photometric variations in unstructured image collections. These embeddings are learned during
optimisation and are provided as conditions to the RGB network, therefore, allowing the model to adjust the
emitted radiance of the scene for a particular image, ensuring that the trained 3D geometry remains static across
all images despite difference in illumination, exposure, and post-processing.

Occlusion handling: Transient objects such as pedestrians and vehicles often disrupt static scene reconstruction.
To robustly filter these occluders, we generate a per-pixel visibility map using a learning-based CGNet
segmentation network®. We train our pipeline in an end-to-end manner on Phototourism dataset scenes>?,
without manual mask annotations (as in Neural Reconstruction in-the-wild®?), by utilising a self-supervised loss.
We multiply the predicted visibility map with the per-pixel squared difference between the rendered and
observed images before computing the reconstruction loss. This encourages the network to downweight regions
where transient objects appear, preserving only the static scene geometry for the SDF-based reconstruction.

Energy efficiency: Our method, running for 200,000 iterations consumes only 1,81kWh of GPU power. The only
other alternative method to ours, which is Neural Reconstruction in-the-wild (using pre-trained masks)®? is
estimated to consume at least one order of magnitude more power.

The evaluation was performed on the same scenes as our Fast NeRF in-the-wild pipeline (Section 4.1.1) and we
follow the same evaluation scheme as described in Section 4.1.1. Our model was trained on an NVIDIA RTX A6000
48GB GPU. Qualitative results on the Brandenburg Gate scene are presented in Figure 11, showcasing a textured
mesh output. Additionally, interpolation on the learned appearance embedding space is presented for the same

80 Wu, T., Tang, S., Zhang, R., Cao, J., & Zhang, Y. (2020). Cgnet: A light-weight context guided network for semantic
segmentation. IEEE Transactions on Image Processing, 30, 1169-1179.
61 Sun, J., Chen, X., Wang, Q., Li, Z., Averbuch-Elor, H., Zhou, X., & Snavely, N. (2022, July). Neural 3d reconstruction in the
wild. In ACM SIGGRAPH 2022 conference proceedings (pp. 1-9).
62 Sun, J., Chen, X., Wang, Q., Li, Z., Averbuch-Elor, H., Zhou, X., & Snavely, N. (2022, July). Neural 3d reconstruction in the
wild. In ACM SIGGRAPH 2022 conference proceedings (pp. 1-9).
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scene in Figure 12, in which we showcase that the integral parts of the reconstructed object remain structurally
distinct while only the appearance of the scene is modified. Quantitative results are presented in Section 5.1.3.

Figure 11: Textured mesh results on Phototourism's Brandendburg Gate scene from different viewpoints.

WL T T N M
PR PR e PR T R

Figure 12: Qualitative results of appearance interpolation in the learned embedding space. (a) the original image, (b)-(f) model rendering
output with different appearance embeddings.

Our method successfully reconstructs high-fidelity, coloured 3D meshes from in-the-wild images using an SDF-
based representation for explicit surface extraction. Efficiency is central to the design, with the incorporation of
the octree feature volume training and energy consumption are significantly accelerated by pruning empty
space. The pipeline demonstrates robustness by using appearance embeddings to handle photometric variations
and a self-supervised network to effectively filter transient occluders.

4.1.4 3DVista

In recent years, the advancement of artificial intelligence models, particularly techniques based on NeRFs, has
revolutionised the way 3D content can be generated. NeRF technologies enable the creation of photorealistic 3D
reconstructions from simple video sequences (like drone footage) or image collections captured from multiple
viewpoints, significantly reducing the time and technical expertise required compared to traditional 3D modeling
methods.

3D Vista is a user-friendly 3D reconstruction service powered by NerfStudio and NeRF technology. It allows users
to easily generate high-quality 3D models from video footage. The system automatically configures optimal
parameters—refined through extensive testing—based on a single user input: the desired model resolution.
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With just one setting, 3D Vista generates a ready-to-run command string, streamlining the entire NeRF workflow
for fast and accurate results.

The 3D Vista service was developed to address the growing demand for accessible and efficient tools for creating
3D models from video footage, such as drone captures or mobile recordings. In fields such as audiovisual
production, augmented and virtual reality, architecture, and cultural heritage documentation, there is a strong
need to quickly and cost-effectively transform real-world environments into detailed digital replicas.

By integrating with NerfStudio, 3D Vista makes this process accessible even to non-expert users, automating the
steps of preprocessing, training, and 3D model visualization. The use of optimized and pre-trained NeRF models
allows for faster and more efficient training phases, supporting iterative, rapid, and scalable workflows.

4.1.4.1 Experimental results

In this section, we present the results generated by systematically combining key parameters, including texture
resolution and vertex count, to produce low, medium, high, and super high resolution mesh variants. These
settings simplify the user's workflow by automating the process of balancing individual parameters. Users may
simply select the resolution tier that best fits their needs and requirements.

Table 4 shows the mesh profiles defined according to different texture resolution, and number of vertices,
together with the corresponding output size and computation time using an NVIDIA RTX A5000 GPU. An example
of a 3D model of the Basilica of Superga generated by applying the LOW profile and the SUPER HIGH profile
starting from the same 2D video is illustrated in Figure 13.

Table 4: 3D Vista mesh profiles and corresponding parameters.

LOW 1,024 50,723 23 5 minutes

MID 2,048 152,450 72 50 minutes

HIGH 4,096 252,404 119 1 hour 45 minutes
SUPER HIGH 4,096 504,415 247 4 hours 30 minutes
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Super HIGH

Figure 13: Examples of two 3D models of the Basilica di Superga, generated starting from the same 2D video source and applying two
opposite mesh profiles of the 3D Vista service.

4.2 Vision based Reconstruction

4.2.1 Structure from Motion

4.2.1.1 Previous pipeline

The B1 version of the Structure from Motion (SfM)-based 3D reconstruction service offered by XReco relied on a
traditional SfM approach using unordered 2D images as input to produce a dense, textured 3D mesh model.

The process begins with an initial SfM optimisation aimed at obtaining the camera parameters for the input
images, which uses SIFT®® to extract the feature points needed in this task. The results include a sparse point
cloud, which is not suitable for 3D reconstruction. Once the camera parameters are available, contrast

53 D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Springer 1JCV (Intl. Journal of Computer Vision), vol.
60, p. 91-110, Nov. 2004. DOI: 10.1023/B:VISI.0000029664.99615.94.
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adjustment algorithms such as CLAHE®** and
MSRCR® are applied to the images, and feature
points are once again extracted, this time using A-
KAZE®®. As shown in Figure 14, this approach
significantly increases the number of feature
points obtained, which can then be triangulated
using the camera parameters to end up with a
much denser point cloud.

Poisson surface reconstruction is applied to the
point cloud to generate a triangular mesh. The
number of triangles of this mesh is reduced to the
number requested by the user using a combination
of Laplacian smoothing and Quadric Error Metric
(QEM)®-based decimation.

(a) SIFT (b) pre-processing + A-KAZE

. . . . Figure 14: SIFT feature points vs pre-processing + A-KAZE feature points.
Finally, a multi-texturing® step is performed to '~ f P presp g9 f P

compute a texture atlas for the mesh. This

approach evaluates per-triangle visibility from each camera to interpolate texture contributions smoothly,
reducing seams and lighting inconsistencies. Additionally, partial occlusions are handled by comparing color
consistency across views, with inconsistent contributions being suppressed. Textures are efficiently packed into
an atlas using block-based packing.

4.2.1.2 Densifying point clouds using Multi-View Stereo

One of the main improvements introduced in the updated pipeline is the modification of the method used for
point cloud densification. In previous versions, densification was performed using feature points detected with
A-KAZE. However, in the new workflow this approach has been replaced by an algorithm based on the
PatchMatch Multi-View Stereo (MVS)® algorithm. This change not only allows more accurate results to be
obtained, thanks to better exploitation of photometric consistency between multiple calibrated views, but also
significantly improves the computational efficiency of the process. The PatchMatch algorithm structure is

64S. M. Pizer, E. P. Amburn, J. D. Austin, et al., “Adaptive histogram equalization and its variations”, Elsevier Computer Vision,
Graphics, and Image Processing, vol. 39, no. 3, p. 355-68, Sep. 1987. DOI: 10.1016/50734-189X(87)80186-X.
65 7. Rahman, D. J. Jobson, G. A. Woodell, “Multiscale retinex for color rendition and dynamic range compression”, Proc.
SPIE, vol. 2847, Applications of Digital Image Processing XIX, Nov. 1996. DOI: 10.1117/12.258224.
66 p, F. Alcantarilla, J. Nuevo, A. Bartoli, “Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces”, Proc.
BMVC (British Machine Vision Conf.), p. 13.1-11, Sep. 2013. DOIl: 10.5244/C.27.13 (https://bmva-
archive.org.uk/bmvc/2013/Papers/paper0013/).
57 M. Garland, P. S. Heckbert: “Surface simplification using quadric error metrics”, Proc. ACM SIGGRAPH, p. 209-16, Aug.
1997. DOI: 10.1145/258734.258849.
68 R. Pagés, D. Berjén, F. Moran, N. Garcia, “Seamless, Static Multi-Texturing of 3D Meshes”, EuroGraphics Computer
Graphics Forum, vol. 34, no. 1, p. 228-38, Feb. 2015. DOI: 10.1111/cgf.12508.
695, Shen: “Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes”, IEEE Transactions
on Image Processing, vol. 22, n® 5, pp. 1901-1914, May 2013. DOI: 10.1109/TIP.2013.2237921
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designed for highly parallel execution, which considerably reduces processing times without compromising
quality.

The method used is based on the MVS approach, which is widely used in computational photogrammetry
because it allows highly accurate estimation of the geometry of a 3D scene from multiple views. The system
implemented relies on an optimised version of this algorithm, which combines efficiency and robustness
against occlusions and complex geometries. This process can be divided into three main blocks:

Preprocessing: First, a region of interest is determined that delimits the 3D volume where relevant geometry is
expected to be found. This region is calculated from the initial cloud and expanded to ensure the inclusion of
potentially visible peripheral areas. Next, inter-camera visibility is analysed, constructing a graph that indicates
which image pairs share sufficient overlap and provide adequate parallax. Finally, multi-resolution versions of
the input images are generated, allowing hierarchical processing from coarse scales to full resolutions, facilitating
progressive and more stable estimation.

Depth Estimation: The core of the densification process consists of estimating, for each pixel in each reference
image, a depth and surface (normal) orientation hypothesis. Initially, random hypotheses are assignhed and
refined by means of an adaptive spatial propagation scheme, where the best solutions are diffused to
neighbouring pixels. This process is enhanced by stochastic refinement, which introduces small perturbations to
escape local minima and explore alternative solutions in ambiguous or low-contrast regions.

Each hypothesis is validated by comparing its consistency with multiple neighbouring images, assessing both
photometric similarity (based on texture patch matching) and geometric consistency (through epipolar
consistency and normal orientation). The algorithm integrates all these metrics into a composite cost function
that guides the selection of the optimal solution for each pixel.

Fusion and Post-processing: Once the per-pixel depths are estimated, multi-view fusion is performed to
reconstruct a dense point cloud in three-dimensional space. This step combines the different validated
hypotheses, resolving conflicts and eliminating ambiguities through voting and inter-view consistency
mechanisms.

Subsequently, adaptive filtering is applied to improve the quality of the result by eliminating inconsistent points,
with poor visibility or located in unreliable regions. Additional information such as average colour, surface
normals and scale or local density measures are also calculated, attributes that enrich the point cloud and
prepare it for the next stages of the pipeline, such as mesh reconstruction.

Figure 15: Comparison between SIFT (left), A-KAZE (middle), and MVS (right).
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4.2.1.3 Mesh optimisation

Mesh cutting/trimming In certain cases, the primary goal is to obtain an accurate 3D representation of a specific
object, without the need to reconstruct the surrounding environment. However, depending on how the images
are captured, reconstruction algorithms often generate a significantly larger scene that includes much of the
background visible to the cameras.

For this reason, when the object lies entirely within the perimeter defined by the camera positions, it is highly
beneficial to include a functionality that automatically crops the generated 3D mesh. This automatic cropping is
based on the estimated camera positions obtained during the SfM process.

It is important to note that cropping the input images to focus solely on the object is not a viable solution. Such
preprocessing could alter the effective resolution and field of view of the images, potentially causing
inconsistencies that negatively impact both the geometric reconstruction and the texturing quality. 3D
reconstruction algorithms rely on accurate keypoint matches and consistent multi-view coverage, reducing
overlap through image cropping can lower the number of shared features, resulting in a less accurate model.

The mesh cropping process begins by defining a vertical coordinate system. Reconstructed meshes are typically
generated in arbitrary coordinates unrelated to the object's real-world orientation. Defining a consistent vertical
axis allows for precise alignment and enables targeted mesh cropping, isolating the object and removing
irrelevant parts of the scene, thereby improving efficiency and clarity.

This process starts with a set of N cameras, each associated with a calibration matrix that encodes its orientation
in 3D space. In this context, only the rotation around the camera’s local x-axis (rotx) is considered, as it
corresponds to the tilt relative to the horizontal plane. For each camera i, its optical axis ;€ R? is extracted based
solely on this rotational component. From these direction vectors {1y, 7, ..., ry}, @a cumulative covariance matrix
M is constructed.

N
M= ZririT € R3%3
i=1

An eigen decomposition is then performed:

M =QAQ?
where Q = [q4, q2,q3] contains the orthonormal eigenvectors and A = diag(A4,1;,13) the eigenvalues. The
eigenvector associated with the smallest eigenvalue represents the direction of least variance across all camera
viewing directions, in other words, the direction most orthogonal to the observation set. This vector is selected
as the vertical axis of the custom coordinate system:

d = qunin

Using this axis, each camera position p is orthogonally projected onto a plane perpendicular to the axis d and
centered at the origin. This projection is achieved by removing the component in the axis direction:
p-d
PL=P— 77z4
. l1dl]?

A second plane is defined at a positive offset § > 0 along the axis.
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p=p.+6-d

Resulting in two projections per original point. Using all the projected points, a 3D convex hull”® H is constructed.
This hull represents the smallest convex volume that encloses all camera positions and serves as a proxy volume
for defining the region of interest. If {p;} are the projected points, then:

H = Conv({p;}) = zlipi | A = Orz/li =1
7

Next, a cutting plane perpendicular to the vertical axis is generated and centered at the mesh's centroid. The
intersection between this plane and the mesh creates a triangulated surface representing the cutting region. This
method ensures structural consistency, unlike computing a convex hull over a single projected plane, which may
produce non-flat or incomplete geometries.

(a) The original mesh and the original camera (b) The original mesh and the projected camera
positions. positions.

(c) The original mesh and the convex hull obtained (d) The original mesh and the cutting plane
from the projected camera positions. obtained.

Figure 16: Process to obtain the cutting plane.

Once the cutting plane is defined, each vertex is orthogonally projected onto the plane using the formula:

vprojzv_[(v_po)'a]'a

70C. B. Barber, D. P. Dobkin, H. Huhdanp&a: “The Quickhull Algorithm for Convex Hulls”, ACM Transactions on Mathematical
Software, vol. 22, n.2 4, p. 469-483, Dec. 1996. DOI: 10.1145/235815.235821.
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where p, is a point on the plane and d is the normalized direction vector perpendicular to the plane.

An orthonormal basis {eq, e, } is then constructed in the plane, where e, is a vector lying on the plane, and e, =
1 X e, with 1l being the normal vector to the plane. Each projected vertex is then mapped to 2D coordinates
via dot products:

X = (vproj — Do) e
Yi = (vproj — Po) €

From the resulting 2D coordinates, a polygon P c RZis built from the previously generated intersection. Each
projected vertex is tested for inclusion in this polygon:

v?? € P = vertex included
Only those faces whose three vertices are entirely contained within the polygon P are retained:

— (i i 2D 2D 2D
f=(J k) € Fruterea © vi ", vj",vi;" €P

Finally, the remaining vertices and faces are remapped to ensure the mesh's topological continuity. Unused
vertices are discarded, and face indices are updated accordingly, resulting in a clean and optimised
representation of the target 3D object.

Figure 17: Result of applying the mesh cutting on the 3D mesh of the Einstein tower.

Mesh filtering: The geometry resulting from the reconstruction process may contain multiple disconnected
components, also known as "islands." These can arise because the reconstruction method attempts to generate
information in regions with insufficient data or because certain mesh regions partially intersect with the cutting
plane when the clipping stage is applied. To enhance the robustness and quality of the model, components with
significantly smaller surface areas compared to the main component are initially discarded.
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Specifically, all components representing less than 10% of the total number of faces of the largest component
are removed. This operation helps eliminate artifacts, structural noise, and degenerate regions, thereby
improving both computational performance and the clarity and readability of the model.

From a topological standpoint, a search for connected components is performed on the mesh graph, and their
relative size is evaluated by the condition:

|Fi

iE I< 0.1 = component removed
max

where F; denotes the set of faces of component i, and F,,,,, is the set of faces of the largest component.

Once smaller islands have been removed, the mesh may still contain several disconnected components. To
manage them individually, a complete partition of the mesh into connected components is performed, defined
as maximal subsets of vertices and faces in which any pair of vertices is connected by a path of edges. This
separation allows each component to be treated as an independent entity within the global mesh set. Formally,
this corresponds to a decomposition into equivalence classes under the connectivity relation between vertices.

Although this partitioning step is theoretically sufficient, removing small islands beforehand has been shown to
significantly improve computational performance by reducing the complexity of the connectivity graph and the
overhead associated with processing numerous insignificant components. For instance, in the case of the Arco
Valentino mesh, this pre-filtering step reduces computation time from 620 seconds to just 40, demonstrating its
practical importance in optimizing mesh workflows.

Among all separated components, the one with the greatest number of vertices is automatically selected,
regarded as the main component because it presumably contains the geometry of greatest interest.

Given the set {M;, M,, ..., My} of separated components, the main component is defined as:
Mnain = arg maxpy, Vil
where V; is the set of vertices of component M;.

This criterion favours retaining the most structurally significant region, automatically discarding disconnected
fragments of lesser importance without requiring manual intervention. Figure 18 compares the resulting mesh
without any post-processing (left) and the same mesh after applying only the mesh filtering step (right).
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Figure 18: Comparison between the mesh without any post-processing (left) and the mesh after applying the mesh filtering step (right).

Mesh simplification: We apply again a QEM-based decimation process to make sure that simpler (i.e., flatter)
mesh areas are represented with fewer triangles while mesh corners and details are preserved. However, this
time, thanks to the prior optimisation (mesh cutting and mesh filtering), the quality of the final model increases:
since the same number of triangles is now distributed over a smaller surface area, the level of detail on the object
of interest increases.

s g g d 4 T b7 . y : y
(a) Original mesh (b) Einstein tower mesh with (c) Einstein tower mesh after
500k faces mesh optimization process

with 500k faces

Figure 19: Comparison between the original mesh of the Einstein tower (a), the mesh with 500k faces and the mesh after the complete
optimisation process with 500k faces.

5 Scene Reconstruction Services Validation

This section presents a complete validation framework for most of the 3D reconstruction services described in
Section 4, encompassing both objective (for all the services presented) and subjective (for SfM) quality
assessment methodologies. The evaluation approach employs synthetic view rendering from reference models
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to enable systematic and repeatable quality analysis across different reconstruction parameters and input
conditions.

5.1 Reconstruction quality evaluation

The methodology used to evaluate the quality of reconstruction services was based on the simulation of 3D
modeling processes applied to archaeological sites, buildings, and antiquities. This methodology enables a
systematic and repeatable evaluation of reconstruction quality under varied input conditions. To this end, six 3D
meshes were selected from the BASICS” dataset and downloaded from Sketchfab’? to serve as reference models.
These models, representative of real-world cultural heritage objects, are shown in Figure 20.

a) Horn of Salt Diggers b) Palace of Fine Arts. c) Kriegerdenkmal.
Brotherhood of Wieliczka.

d) Schwarzenbach - houses with e) Roman Temple of Evora. f) Mexico City Metropolitan
interior. Cathedral.
Figure 20: Selected models for the 3D reconstruction quality evaluation

7L A. Ak, E. Zerman, M. Quach, A. Chetouani, A. Smolic, G. Valenzise, and P. Le Callet, “Basics: Broad quality assessment of
static point clouds in a compression scenario,” IEEE Transactions on Multimedia, vol. 26, pp. 6730-6742, 2024.
72 https://sketchfab.com/
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The models were chosen to ensure variability while
maintaining comparable characteristics. For example,
objects a, b, and c in Figure 20 each contain fewer than
500,000 triangles, whereas objects d, e, and f have
approximately 2 million triangles each.

Each reference model was used to generate 1,000
synthetic views from virtual camera positions uniformly
distributed over a spherical surface, following a spiral
trajectory from the base to the top. All images were
rendered using a fixed field of view (42°) and a
resolution of 3840 x 2160 pixels (~8.3 MP).

For the reconstruction process, different subsets of

these images were used, containing 50, 125, 250, or 500

views, respectively. An independent set of 300 Figure 21: Example of one of the reference models along with the
camera positions used to capture the synthetic views.

additional views, not included in the reconstruction
process, was reserved exclusively for evaluation. This ensures that the assessment focuses on previously unseen
viewpoints, thereby improving the robustness and fairness of the evaluation.

An example of one of the reference models along with the camera positions used to capture the 1000 synthetic
views is shown in Figure 21.

To ensure accurate comparison, the reconstructed models were aligned with the reference models using
transformation parameters (scale, rotation, and translation). This alignment facilitates the calculation of both 2D
and 3D quality metrics.

For full-reference (FR) metrics, image comparisons were made from matching viewpoints in both the original and
reconstructed models. Since only specific regions of each image were relevant, binary masks were created to
isolate the object from the background.

5.1.1 Objective quality metrics

The evaluation focused on commonly used image-based quality metrics to assess the effects of reconstruction
parameters in each service.

For FR metrics, comparisons were performed between images rendered from corresponding viewpoints in the
original and reconstructed models. Since only specific regions of each image were relevant, binary masks were
generated to isolate the object from the background, ensuring that quality assessments focused solely on the
reconstructed content. The following metrics were employed:
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e FR metrics: PSNR”3, SSIM”* and LPIPS™®.
e No-reference metrics: BRISQUE’® and Natural Image Quality Evaluator (NIQE)”’.

Together, these metrics provided a robust and automated framework for evaluating the visual fidelity of 3D
reconstructions under varying input conditions.

5.1.2 SfM

We conducted objective and subjective experiments to evaluate the quality of the models reconstructed using
SfM and how it varies depending on different configuration parameters. This was achieved by systematically
varying three parameters: the number of input images, the number of triangles used in the mesh, and the texture
resolution.

5.1.2.1 Objective evaluation

For each viewpoint, the union of the binary masks from the reference and reconstructed images was used to
compute image-based metrics. This approach avoids the overly optimistic results that can arise when using the
intersection of masks, particularly in cases where reconstructions significantly deviate from the ground truth. To
validate the effectiveness of the masking strategy, the Intersection over Union (loU) was also computed across
all views, achieving an average loU of 98.44% (+0.79%).

4K "

a) Original model mask b) Reconstructed model mask ¢) Final mask

Figure 22: Visualisation of the union between the reference model's mask and the corresponding reconstructed model's mask, used to
produce the final mask employed for evaluation in that view.

73 https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

74 https://en.wikipedia.org/wiki/Structural_similarity_index_measure

75> Zhang, R, Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 586-595).

76 Mittal, A., A. K. Moorthy, and A. C. Bovik. "No-Reference Image Quality Assessment in the Spatial Domain." IEEE
Transactions on Image Processing. Vol. 21, Number 12, December 2012, pp. 4695-4708.

77 A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind” image quality analyzer,” IEEE Signal processing
letters, vol. 20, no. 3, pp. 209-212, 2012.
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Figure 23: Workflow for generating the final comparison view between original and reconstructed models.

Additionally, because SfM produces mesh-based reconstructions, two geometry-based metrics were
incorporated to complement the image-based evaluations: Hausdorff’® distance and L? (Euclidean) distance.

These metrics offer a spatial analysis of reconstruction accuracy, allowing for a more comprehensive assessment
that considers not only visual similarity but also geometric fidelity. Table 5 presents the mean and Standard
Deviation (SD) of both image-based for the 300 test images and model-based quality metrics.

Table 5: Mean * SD evaluated over the 300 test captured images for the selected 3D model reconstruction parameters. The best result is
bold underlined, the second best in bold, the third in underlined, and the worst is unformatted. A 1 indicates that higher values
correspond to better quality, while {, signifies the opposite. Texture resolution is indicated in MP.

PSNRT  SSIM P  LPIPS ¢
Mean+SD Mean + Mean *
SD SD
o 24.037+ 0634+ 0.124%
e 2.931 0.143 0.075
o 24105+ 0636+ 0121%
o 3.029 0.147 0.077
n 24.088%  0632: 0.120%
S 3.021 0.147 0.077
o 23907+ 0618+ 0.119:%
S 2.909 0.145 0.077

BRISQUE

N2
Mean £ SD

70.974 +
12.962
69.708 +
13.500
69.156 *
13.656
68.701 +
13.913

NIQE |

Mean *
SD

6.802 +
1.621

Hausdorff {,

Mean £ SD

0.011 +
0.003
0.011 +
0.004
0.013 +
0.005
0.014 +

0.008

[N

Mean *
SD
0.001 +
0.000
0.001 +
0.000
0.001
0.000
0.001 +
0.000

78 N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors between surfaces using the Hausdorff distance,” in
Proceedings. IEEE international conference on multimedia and expo, vol. 1. IEEE, 2002, pp. 705-708.
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PSNR SSIM 1 LPIPS { BRISQUE NIQE ' Hausdorff |, [N

NZ
Mean+SD Meant Meant MeantSD Meant Mean+SD Mean *
SD SD SD SD
- 22.797 £ 0.587+ 0.127 % 71.682 6.759 + 0.012 = 0.001 £
=~ 2.458 0.121 0.078 13.629 1.617 0.005 0.000
N 24.062 0.634+ 0.120+ 69.789 6.767 0.012 0.001 £
~ 3.002 0.149 0.077 13.464 1.595 0.006 0.000
% 24.518 + 0.647 + 0.117 + 68.917 + 6.762 + 0.012 = 0.001 £
2 3.048 0.153 0.076 13.476 1.585 0.006 0.000
100k 24.759 + 0.651+ 0.118+ 68.151 + 6.771 % 0.012 0.001
2.958 0.149 0.074 13.329 1.575 0.006 0.000
1 22.132 + 0482+ 0.181% 81.499 + 7.002 + - -
2.381 0.108 0.086 9.242 1.187
4 23.748 + 0.607+ 0.133+ 69.811 + 6.750 = - -
2.667 0.115 0.069 10.605 1.485
16 25.031 + 0.707 £+ 0.090 + 64.168 + 6.650 + - -
2.845 0.108 0.051 12.433 1.773
32 25.226 + 0.724+ 0.079+ 63.060 + 6.657 + - -
2.897 0.108 0.046 12.918 1.820

In terms of the number of input images, the results are inconsistent across metrics. While LPIPS and BRISQUE
indicate improvements with more images, Hausdorff and NIQE both suggest the opposite. PSNR, SSIM, and L2
show no clear trend.

Regarding mesh complexity, most metrics, such as PSNR, BRISQUE, and LPIPS, point to a quality increase with
higher triangle counts. All metrics identify the 5k triangle models as the lowest quality. The best results are
generally found with 100k triangles, LPIPS favours the 50k configuration though. In contrast, NIQE shows a
reverse pattern, with quality decreasing as triangle count increases.

In terms of texture resolution, most metrics agree on improved quality at higher resolutions, with the exception
of NIQE, which rates 16 MP slightly higher than 32 MP.

To further investigate these differences, statistical analyses were performed. Since the data did not follow a
normal distribution (confirmed by multiple normality tests), non-parametric Kruskal-Wallis”® tests were used,
see Table 6. For parameters showing statistically significant results (p < 0.05), post-hoc pairwise comparisons
were performed using Wilcoxon tests with Bonferroni correction, see Table 7. These analyses confirmed
significant effects for triangle count and texture resolution across most metrics. For the number of images, only

79 W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal of the American statistical
Association, vol. 47, no. 260, pp. 583—621, 1952.
59

XReco is an HorizonEurope Innovation Project co-financed by the EC under Grant Agreement ID: 101070250.
The content of this document is © the author(s). For further information, visit xreco.eu.




XReco Project — Grant ID 101070250 D4.2 // XR & Media Transformation Services v2

the Hausdorff distance showed statistically significant differences, especially between configurations with 500
images and those with 50 or 125. This suggests that geometry-based evaluations are more sensitive to image
count than appearance-based metrics, potentially due to the uniform distribution of camera viewpoints in the
dataset.

Table 6: P-values for the Kruskal-Wallis test, asterisks indicate statistical significance. A *-“indicates that the test was not performed.

PSNR SSIM LPIPS BRISQUE NIQE Hausdorff L2
0.9648 0.7447 0.9300 0.4001 0.8794 0.0349* 0.8122
<0.0001*  0.0036* <0.0001* 0.0666 0.9872 0.9824 < 0.0001*

<0.0001* <0.0001* <0.0001* <0.0001* 0.0024* = =

Table 7: P-values for the paired-Wilcoxon tests with Bonferroni correction, asterisks indicate statistical significance. N/A has been used to
indicate the cases in which the Kruskal-Wallis test did not report statistical difference. A *-“ indicates that the test was not applicable.
Texture resolution is indicated in MP.

PSNR SSIM LPIPS BRISQUE NIQE Hausdorff 12
50 vs 125 N/A N/A N/A N/A N/A 1.0000 N/A
50 vs 250 N/A N/A N/A N/A N/A 0.2199 N/A
50 vs 500 N/A N/A N/A N/A N/A 0.0135* N/A
125 vs 250 N/A N/A N/A N/A N/A 0.6443 N/A
125 vs 500 N/A N/A N/A N/A N/A 0.0051* N/A
250 vs 500 N/A N/A N/A N/A N/A 0.7250 N/A
5k vs 25k <0.0001* <0.0001* <0.0001* N/A N/A N/A <0.0001*
5k vs 50k <0.0001* <0.0001* <0.0001* N/A N/A N/A < 0.0001*
5k vs 100k <0.0001* <0.0001* <0.0001* N/A N/A N/A <0.0001*
25k vs 50k <0.0001* <0.0001* <0.0001* N/A N/A N/A < 0.0001*
25k vs 100k <0.0001* <0.0001* 0.0420* N/A N/A N/A <0.0001*
50k vs 100k < 0.0001* 0.6424 1 N/A N/A N/A < 0.0001*
lvs4 <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* = -
lvs16 <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* = =
1vs32 <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* = =
4vs 16 <0.0001* <0.0001* <0.0001* <0.0001* 0.0723 = =
4vs 32 <0.0001* <0.0001* <0.0001* <0.0001%* 0.1748 - -

16 vs 32 <0.0001* <0.0001* <0.0001* <0.0001* 0.5398 = =

Post-hoc analysis reveals that FR metrics (PSNR, SSIM, LPIPS) effectively detect changes in mesh detail,
particularly at lower triangle counts. Likewise, texture resolution significantly impacts all image-based metrics,
though NIQE only distinguishes between the lowest and higher resolutions, not between medium and high
settings.

The results indicate that variations in the objective metrics are largely driven by differences in mesh complexity
and texture resolution inherent to the models. In contrast, the number of input images has a limited impact on
the metrics when the images are uniformly distributed, suggesting that model characteristics play a more
significant role in influencing the evaluation outcomes under these acquisition conditions.
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5.1.2.2 Subjective evaluation

The Double Stimulus Degradation Category Rating (DCR)® methodology has been employed to design the
subjective evaluation of the models. This approach allows participants to view the original model alongside its
reconstructed versions, each generated using different parameter settings and therefore exhibiting varying levels
of distortion. By directly comparing the original and distorted models, users are better equipped to assess the
visual quality of the 3D reconstructions with greater accuracy and consistency.

Prior to the evaluation, a selection process was conducted to determine which models would be used. Five
individuals collaboratively divided and assessed all available models, ensuring that each model was evaluated
during an initial round of voting. These preliminary assessments were used solely for model selection and were
not included in the final results. Based on this initial evaluation, the “Schwarzenbach - houses with Interior” was
excluded, as it consistently received high scores (mostly 4s and 5s), indicating limited potential for revealing
perceptible quality differences across parameter variations.

Following this selection process, the decision was made to evaluate the remaining models using the parameter
combinations shown in Table 8.

Table 8: Combinations of parameters evaluated during the subjective experiment.

5k 1

16

32

12.5k 1
16

32

100k 32
25k 1
16

32

100k 32
5k 32

50k 32
100k 32
100k 32

8 |TU, P. (1999). 910. Subjective video quality assessment methods for multimedia applications. International
telecommunications union telecommunication sector.
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These parameter combinations were selected with the goal of exploring a wide and representative spectrum of
reconstruction quality levels. By systematically varying the number of input images, the mesh complexity
(number of triangles), and the texture resolution (in megapixels), it was possible to simulate different real-world
scenarios, from low-resource reconstructions to high-fidelity outputs.

The combinations were designed to isolate the
impact of each parameter while maintaining control
over the others. For example, in some tests the
number of images varied while keeping resolution Welcome! Please select the

and mesh complexity constant, allowing for an

. . . Training Session |
analysis of how image coverage affects perceived

quality. In other cases, triangle count, or resolution JLestecsion
was varied independently. Additionally, certain o Pt
combinations intentionally pushed parameters to ' | [ secctone. |

extreme values (e.g., 5k triangles or IMP textures) to
examine  perceptual thresholds for model Figure 24: lllustration of the Main Menu of the subjective evaluation

degradation. application.

This experimental design ensures a comprehensive
evaluation of how each individual factor contributes to the subjective perception of quality in 3D reconstructions.

An interactive application was developed in order to
conduct the tests using Unity and C#. This tool was
specifically designed to streamline the evaluation
process and is structured into several functional o]

Select one... v

scenes. The central scene is the Main Menu, see
Figure 24, from which users can access two primary
modes: the Training Session and the main
evaluation mode, referred to as the Test Session.
Both scenes share a similar visual layout and
interaction logic to ensure consistency throughout Submit
the user experience.

Figure 25: lllustration of the Tester data collection interface.

The Training Session serves as a preparatory

environment in which users can become familiar with the visual exploration and rating mechanics of the
application. In this mode, three distorted versions of a 3D model, distinct from those used in the Test Session,
are presented.

Before entering the Test Session, users are required to provide basic demographic and contextual information,
including an identification code (ID), age, gender, the specific playlist to be evaluated, and their previous
experience with 3D models, as shown in Figure 25.

In both the Training and Test Sessions, participants are presented with a pair of 3D models: a reconstructed
original and its corresponding distorted version. These models are dynamically loaded from two separate folders,
Originals and Distorted, using Unity’s Resources.Load() function, following the structure defined by
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preconfigured playlists. The selection of model pairs is handled through a randomization algorithm that ensures
no repeated combinations are shown and prevents consecutive evaluations of identical models. Additionally, the
system automatically detects when all pairs in the playlist have been evaluated, triggering a transition to a final
closing scene.

The application enables synchronized rotation and tilting of both models using a system of coupled cameras that
orbit around each object. These camera movements are controlled via sliders, ensuring that the user observes
both models from identical and symmetrical perspectives.

a) lllustration of the Training Session view. b) lllustration of the Test Session view.
Figure 26: lllustration of the user interface during the visualisation of models in both the Training (a) and Test sessions (b).

Once the visual inspection is complete, the user
proceeds to a voting scene where they rate the quality
of the distorted model in comparison to the original,

using a scale from 1 to 5, see Figure 27. All results are
automatically recorded in a CSV file along with
additional metadata such as user input and session
configuration. Furthermore, the application logs all
camera interactions (rotations and tilts), enabling o
subsequent analysis of user behaviour and visual Submit

exploration patterns. Figure 27: lllustration of the voting interface.

The user testing phase involved 36 participants, 26 men
and 10 women. 14 of them completed two sessions with different playlists on separate days, while the remaining
22 completed a single session.

In terms of prior experience with 3D models, 7 participants reported no previous exposure, 11 had interacted
with 3D models fewer than five times, 6 had between 5 and 20 prior experiences, 7 had used 3D models on more
than 20 occasions, and 5 indicated they use them on a daily basis.

Each testing session lasted between 15 and 35 minutes, depending on the individual participant.

At the start of each session, participants received a detailed explanation of the evaluation procedure, the type
of data that would be collected, and the structure of the test. In addition, a short screening test was conducted
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to identify potential visual impairments, such as colour blindness or difficulty seeing at certain distances. After

this initial briefing, users proceeded to interact with the application.

Each session comprised the evaluation
of a training set followed by two
distinct test playlists, each containing a
different subset of 3D models.
Participants were free to take as much
time as needed to examine the models
before submitting their ratings.
Additionally, they were given the
opportunity to take a short break
between the evaluation of each
playlist to reduce visual fatigue and
maintain  consistent  performance
throughout the session.

The results obtained for each model
are presented below.

Horn of Salt diggers brotherhood of
Wieliczka: In the following graph,
Figure 28, we can observe that the
model generally received very good
scores, consistently achieving an
average Mean Opinion Score (MOS)
above 3 in all cases, except when using
both 50 and 125 images combined with
25,000 triangles and a 1MP resolution.

Palace of Fine Arts: In Figure 29, the
model’s scores are noticeably lower
compared to the previous case. This
difference may be attributed to the
fact that, although the original models
have a similar number of triangles

MOS

MOS * 95% Cl — Horn of Salt

Parameter combination (I: images, T: triangles, R: resolution)

Figure 28: MOS * 95% Cl for the "Horn of Salts Diggers Brotherhood of Wieliczka"

w

~

-

model across different parameter combinations in subjective tests.

MOS * 95% Cl — Palace of Arts

Parameter combination (I: images, T: triangles, R: resolution)

Figure 29: MOS * 95% Cl for the "Palace of Fine Arts" model across different
paraemeter combinations in subjective tests.

(fewer than 500,000), this model’s geometry and texture are more complex. As a result, the quality could
potentially improve by increasing the number of triangles. However, it is worth noting that when higher
parameter settings are applied, the MOS score does surpass 3.
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Kriegerdenkmal: Figure 30 shows that this
model
parameter combinations. These favourable
results might be due to the relatively simple
geometry of the original model and the fairly
uniform colouration, which likely makes
reconstruction easier and more visually
pleasing.

scored above 3 in nearly all

Roman Temple of Evora: In Figure 31, the
model received very high scores. Despite the
original model having a high triangle count,
the uniform colour of the object helps mask
geometric imperfections, leading to better
subjective evaluations.

Mexico City Metropolitan Cathedral: In
the case of Figure 32, the ratings drop
again, with MOS scores exceeding 3 only in
four instances. This decline can be
explained by the fact that the original
model is the most complex of all studied,
both in terms of geometry and texture.
Consequently, distortions become more
apparent when comparing the original and
reconstructed models.

Overall, across all cases, resolution
emerges as the most influential parameter,
followed by the number of triangles. The
number of images appears to have the
least impact in these scenarios, which
aligns with the results observed in the
objective tests.

D4.2 // XR & Media Transformation Services v2

MOS + 95% Cl — Kriegerdenkmal

Parameter combination (I: images, T: triangles, R: resolution)

Figure 30: MOS + 95% Cl for the “Kriegerdenkmal” model across different
parameter combinations in subjective tests.

MOS + 95% Cl — Temple of Evora

3
W
o
=

2

Parameter combination (I: images, T: triangles, R: resolution)

Figure 31: MOS + 95% Cl for the “Roman Temple of Evora” model across

different parameter combinations in subjective tests.
MOS + 95% Cl — Mexico City Cathedral

MOS

o7
By

T & r
T s Y
R S

Parameter combination (I: images, T: triangles, R: resolution)

Figure 32: MOS + 95% Cl for the “Mexico City Cathedral” model across different
parameter combinations in subjective tests.
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5.1.3 Fast Neural Reconstruction in-the-wild

In a unified manner, we additionally tested our Fast Neural Reconstruction in-the-wild algorithm (Section 4.1.3)
on the proposed dataset with the proposed evaluation pipeline. The quantitative results are presented in Table
9, while qualitative results are presented in Figure 33.

Table 9: Quantitative results for Fast Neural Reconstruction in-the-wild. Results on image-based reference and non-reference metrics are
provided, along with geometry-based metrics.

50 24.402 +3.080 0.475 + 0.264 + 35.567 20.06 0.122 + 0.009 +
0.235 0.094 23.12 0.64 0.048 0.008
125 27.993 +3.49 0.804 + 0.199 + 26.543 2031+ 0.105 + 0.008 +
0.093 0.087 15.31 0.59 0.057 0.005
250 28.091 + 3.59 0.808 * 0.196 25.67 +15.64 20.34 + 0.105+0.1 0.006 *
0.095 0.087 0.55 0.003
500 27.17 +2.82 0.778 + 0.215+ 23.55+17.5 20.15 0.097 0.007 +
0.073 0.077 0.47 0.058 0.005

The experimental results demonstrate that model performance correlates positively with the quantity of input
images. Specifically, image-based quality metrics achieve optimal performance on the 250-image subset, while
geometric quality metrics indicate superior results with larger image sets, though the improvement over the 250-
image subset remains marginal. These findings suggest that while rendering quality plateaus beyond a certain
input threshold, geometric reconstruction accuracy continues to benefit from additional input data.

&
e

(a)

Figure 33: Fast Neural Reconstruction in-the-wild qualitative results. The top row presents textured, while the bottom row presents
geometric results. (a) Horn-of-salt. (b) Palace of fine arts. (c) Roman temple of Evora.

This distinction has important implications for application-specific deployment strategies. Use cases requiring
high geometric precision — such as architectural documentation, cultural heritage preservation, or engineering
applications — will benefit from comprehensive image datasets to achieve optimal reconstruction accuracy.
Conversely, applications prioritising visual fidelity over geometric precision — including XR experiences,
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entertainment content, and immersive visualisation — can achieve satisfactory results with reduced input
requirements, thereby minimising data collection overhead and processing complexity.

5.1.4 Fast NeRF in-the-wild

We also evaluated our Fast NeRF in-the-wild pipeline against the image-based metrics, as this method does not
produce explicit geometric outputs suitable for geometric evaluation. The quantitative results are presented in
Table 10. Additionally, qualitative results on the six scenes of the dataset proposed by UPM are presented in
Figure 34

Table 10: Quantitative results of Fast NeRF-in-the-wild. Here only the image-based metrics are considered, since our NeRF pipeline does
not provide consistent geometry in the explicit sense.

50 20.716 £+0.59 0.6431+0.06 0.3169 +0.0606 48.012 +11.976 19.58 + 0.52

125 20.798 £+1.049 0.679+0.046 0.361+0.081 60.302+10.411 19.256 +0.675
250 21.711+0.647 0.674+0.055 0.364+0.085 61.482+12.924 19.329+£0.894
500 21.991+0.679 0.726+0.051 0.302+0.075 52.132+12.125 19.664 +0.704

The results demonstrate a consistent improvement in rendering quality with increased input data. PSNR values
show steady enhancement from 20.716dB (50 images) to 21.991dB (500 images), indicating improved signal-to-
noise ratio and overall image fidelity. SSIM scores exhibit the most significant improvement, reflecting enhanced
structural preservation in the reconstructed views. Unlike previous geometric reconstruction analysis, these
results clearly demonstrate that the pure NeRF implementation benefits consistently from additional input
images across all evaluated metrics except from NIQUE, which exhibits a different behaviour, as it assesses
intrinsic image properties that may not correlate directly with reconstruction improvements.

Figure 34: Qualitative results on the six scenes of the proposed dataset. (a) The original image. (b) The corresponding rendered image
with Fast NeRF in-the-wild.
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5.1.5 3D Gaussian Splatting

D4.2 // XR & Media Transformation Services v2

We conducted evaluation of our 3DGS pipeline on two representative scenes of the proposed dataset: Horn of
Salt Diggers and Schwarzenbach houses. All experiments followed a consistent protocol: for each train/test split,
camera poses where estimated via COLMAP from the training images, and the 3DGS model was trained for
10,000 iterations. Quantitative results are summarised in

Table 11, while qualitative comparisons are illustrated in Figure 35. Here we calculate only image-based metrics

as geometry in the sense of a mesh is not represented in 3DGS.

Table 11: Quantitative results for 3DGS on different splits of the proposed dataset.

50

125

250

500

50

125

250

500

Ground Truth 50 Iterations

oo v )~ %y «;"”‘?"

PSNR

29.286

32.070

31.238

31.759

27.058

38.161

40.266

40.125

SSIM

0.898

0.922

0.921

0.928

0.907

0.989

0.990

0.990

LPIPS

0.125

0.096

0.098

0.092

0.111

0.016

0.015

0.015

250 Iterations

Figure 35: Visual comparison between the ground truth (left) and renderings from models trained with 50 and 250 images (middle and

right respectively) on the Schwarzenback Houses dataset. While the model trained with 50 images produces a reasonably detailed
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rendering, it lacks accuracy in regions with limited view coverage — such as the building’s entrance — highlighting the importance of view
diversity over sheer quantity.

6 Human-centred Reconstruction, Volumetric and Free-Viewpoint Video

This section presents specialised 3D reconstruction and volumetric video technologies specifically designed for
capturing and rendering human subjects in XR environments. Unlike the general scene reconstruction services
described in Section 4, these technologies address the unique challenges of human representation, including
sparse viewpoint requirements, real-time performance constraints, and the complex dynamics of human
movement and appearance.

6.1 Human-centred NeRF

While D4.1 demonstrated NeRF’s effectiveness for realistic novel view synthesis in dynamic, human-centred
scenarios, significant usability challenges remain. Traditional NeRF implementations require numerous camera
viewpoints and extensive view overlap through SfM, creating complex, costly setups unsuitable for human-
centred applications. Additionally, standard NeRFs lack generalisation capabilities across different scenes.

To address these limitations, we developed GDNeRF® (accepted at ICME 2025%?), a method capable of high-
quality view synthesis using sparse camera configurations with minimal viewpoints. The algorithm leverages
depth map information to construct probabilistic feature volumes from limited source images. Key innovations
include: a 3D CNN generator for processing ambiguous and occluded scene information; Style codes (similar to
StyleGAN®3) for gradual feature volume enhancement; A coarse-to-fine depth estimation strategy for improved
rendering efficiency.

Evaluation on the CWI® (7 cameras) and ActorsHQ®® datasets demonstrates superior performance in sparse
camera settings where existing generalisable NeRF approaches produce artifacts and blurred renders. GDNeRF
successfully synthesises target views using only the three closest source views, significantly reducing setup
complexity while maintaining rendering quality. Figure 36 provides an overview of the method.

81 Sergio Montoya, Ivan Huerta, Josep Escrig. GDNeRF: Generalizable Depth-based NeRF for sparse view synthesis. IEEE
International Conference on Multimedia & Expo (ICME), June 2025
82 https://2025.ieeeicme.org/
8 Tero Karras, Samuli Laine, Timo Aila; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4401-4410
84 Reimat et al., “Cwipc-sxr: Point cloud dynamic human dataset for social-xr,” in Proceedings of the 12th ACM Multimedia
Systems Conference,
2021, pp. 300-306
85 Mustafa Isik, Martin Riinz, Markos Georgopoulos, Taras Khakhulin, Jonathan Starck, Lourdes Agapito, Matthias NieRner;
ACM Transactions on Graphics (SIGGRAPH), 2023, 12 pp.
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Figure 36: From sparse few views, our method extracts a set of feature maps which are projected into our probabilistic feature volume
based on the source views depth maps. Our generator module processes the probabilistic feature volume to generate a feasible
multilevel feature volume. These volumes contain features that the volumetric renderer uses to synthesize the target view in real time,
without the need of per-scene training.

In addition to what was discussed in Section 4.4.6 of D4.1, we have incorporated a generative prior which
improves visible features and generates occluded or missing content in the scene for the sparse view setting.

6.1.1 Generative rendering volume

When addressing sparse novel view synthesis, it is crucial to incorporate a generative prior to infer missing
information based on the contextual source images. To achieve this within our framework, we adopt the
generator from StyleGAN and the discriminator from StyleGANv2%, which have been studied extensively in
recent literature®’.

86 Karras et al., “Analyzing and improving the image quality of StyleGAN,” in Proc. CVPR, 2020
87 Zhou et. al, “Point-stylegan: Multi-scale point cloud synthesis with style modulation,” Computer Aided Geometric Design,
vol. 111, pp. 102309, 2024.
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Specifically, the generator G is a 3D CNN that processes the probabilistic feature volume F; and produces
multiple outputs at different resolutions. The generator follows a UNet-like architecture®, incorporating AdalN
layers®® to embed the generative prior. We employ the Non-Saturating GAN objective®. The generator is trained
to produce feasible and realistic images given the sparse source views. To simplify notation, we encapsulate the
generation and volumetric rendering steps using G (). Therefore, the function G (s, w) outputs a rendered image
conditioned on the source views s and a latent code w.

The discriminator, besides distinguishing between real and generated images, also analyses whether the
generated image is coherent with the context of the source views. This helps the generator produce outputs that
are not only visually realistic but also geometrically and texturally consistent with the input. Additionally, we
experiment with incorporating both synthesized depth information and ground truth depth as an auxiliary
supervision term. This encourages the predicted depth to align with the ground truth depth maps, improving the
spatial fidelity of the rendered views.

6.1.2 Experiments

We conduct both qualitative and quantitative evaluations, alongside comparisons with competing approaches.
Our quantitative evaluation involves measuring three key metrics, PSNR, SSIM, and LPIPS®.. We experimented
with two datasets: CWI3* and ActorsHQ®, as introduced in Section 4.4.2 of Deliverable D4.1.

6.1.3 Ablation study

Our GDNeRF model is primarily compared to ENeRF®?%, the current state-of-the-art method for generalizable
NeRFs. Unlike ENeRF, which relies solely on image-based rendering (IBR), our method combines both IBR and
model-based rendering (MBR). Specifically, we leverage a probabilistic feature volume in conjunction with a
generative model to better handle ambiguous and occluded regions—scenarios where ENeRF tends to struggle,
especially under sparse camera setups. This sparse-view limitation is one of the key challenges that GDNeRF aims
to address. We present a detailed ablation study in Table 12, evaluating performance across three datasets:
DTU%, CWI®, and ActorsHQ®. In this study: GDNeRF-Multi refers to the model variant using a multilevel feature
volume representation. GDNeRF-GANs refers to the full model, incorporating both multilevel features and a
generative rendering module.

88 Ronneberger, 0., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In
Medical image computing and computer-assisted intervention—MICCAI 2015: 18th international conference, Munich,
Germany, October 5-9, 2015, proceedings, part Il 18 (pp. 234-241). Springer international publishing.
8 Chen et al., “On self modulation for generative adversarial networks,” arXiv preprint arXiv:1810.01365, 2018
% Goodfellow et al., “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139-144, 2020.
91 Zhang et al., “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 586-595.
9 Lin et al., “Efficient neural radiance fields for interactive free-viewpoint video,” in SIGGRAPH Asia Conference Proceedings,
2022.
% Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., & Aanaes, H. (2014). Large scale multi-view stereopsis evaluation. 2014 IEEE
Conference on Computer Vision and Pattern Recognition, 406—413. IEEE.

71

XReco is an HorizonEurope Innovation Project co-financed by the EC under Grant Agreement ID: 101070250.
The content of this document is © the author(s). For further information, visit xreco.eu.




XReco Project — Grant ID 101070250 D4.2 // XR & Media Transformation Services v2

The results show that even the base GDNeRF model, which uses only the probabilistic feature volume,
significantly outperforms ENeRF across all datasets. Furthermore, adding the multilevel render volume—inspired
by ZipNeRF’s** rendering technique—enhances results on the CWI and ActorsHQ datasets. Finally, the inclusion
of the generative rendering volume leads to further improvements in rendering quality and consistency.

The results on the ActorsHQ dataset fulfil the requirements of codes NF.156.1, NF.157.1 and NF.158.1 of the 3D
Reconstruction Objective KPIs.

Table 12: Results on DTU, CWI, and ActorsHQ for the different components of GDNeRF and ENeRF. Our model significantly outperforms
ENeRF. Even the baseline GDNeRF, utilising only the probabilistic feature volume, already surpasses its performance.

PSNR SSIiM LPIPS PSNR SSiM LPIPS
ENeRF 14.523 0.471 0.446 21.046 0.807 0.177
GDNeRF 18.504 0.665 0.427 26.445 0.900 0.116
GDNeRF-Multi  18.328 0.666 0.433 26.568 0.901 0.112
GDNeRF-GANs  18.897 0.648 0.381 25.446 0.911 0.097

Our model consistently outperforms ENeRF in sparse setting scenarios, particularly on CWI. Qualitatively, this
difference is evident in Figure 37. While ENeRF struggles to render the person adequately due to the sparse input
views, GDNeRF produces high-quality renders. Figure 38 depicts the qualitative results on the ActorsHQ dataset.
As can be seen, GDNeRF outperforms ENeRF, exhibiting greater consistency, higher quality and far less artifacts.
Finally, we provide the detailed integration APl in Annex | — Section 11.2.

% Barron, Jonathan T., et al. "Zip-nerf: Anti-aliased grid-based neural radiance fields." Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023.
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Figure 37: Comparison between ENeRF and GDNeRF on CWI. ENeRF generates many artefacts and holes compared to our GDNeRF

Groundtruth ~ ENeRF GDNeRE Groundtruth ~ ENeRF GDNERE Groundtruth  ENeRF GDBERE
(Ours) (Ours) (Ours)

Figure 38: Comparison between ENeRF and GDNeRF in ActorsHQ. ENeRF generates many artifacts and holes compared to our GDNeRF.
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6.2 Human-centred Gaussian Splatting GDGS

3DGS has emerged as a compelling alternative to NeRFs due to several distinct advantages. Unlike NeRF’s
computationally expensive volumetric rendering through neural networks, 3DGS enables real-time rendering on
standard GPUs by representing scenes as Gaussian primitives. This computational efficiency makes 3DGS
particularly suitable for interactive applications including gaming, VR, and robotics. The explicit point-based
representation employed by 3DGS offers superior interoperability, manipulation capabilities, and optimisation
potential compared to NeRF’s implicit volumetric approach. Recent research demonstrates that 3DGS excels in
preserving detailed geometry and texture fidelity®. These advantages have motivated our focus on 3DGS-based
algorithms, leading to the development of a novel method for generalisable sparse view synthesis.

Dynamic reconstruction captures 3D scenes with moving objects and deformations. HyperReel®® uses geometric
primitives with memory-efficient volume representation, while 4DGS?” extends 3DGS to spatio-temporal 4D
volumes. LongVolCap®® handles extended sequences by modelling temporal redundancy. However, these
methods require substantial camera arrays — approximately 60 cameras for complete 360° coverage.

Human-oriented reconstruction leverages parametric templates like SMPL*® as priors. HumanNeRF®
reconstructs humans from single-camera videos using canonical poses and deformation models. SIFU%!
enhances textures through cross-attention and diffusion, while HumanSplat'®? predicts Gaussian properties from
single images using human priors. SplattingAvatar'®® combines mesh-based shape modelling with 3DGS. Despite
these advances, achieving real-time, generalisable sparse-view synthesis remains challenging.

% Huang, Binbin, et al. "2d gaussian splatting for geometrically accurate radiance fields." ACM SIGGRAPH 2024 conference
papers. 2024.
% Attal, Benjamin, et al. "HyperReel: High-fidelity 6-DoF video with ray-conditioned sampling." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2023.
%7 Duan, Yuanxing, et al. "4d gaussian splatting: Towards efficient novel view synthesis for dynamic scenes." arXiv e-prints
(2024): arXiv-2402.
% Xu, Zhen, et al. "Representing long volumetric video with temporal gaussian hierarchy." ACM Transactions on Graphics
(TOG) 43.6 (2024): 1-18.
% Loper, Matthew, et al. "SMPL: A skinned multi-person linear model." Seminal Graphics Papers: Pushing the Boundaries,
Volume 2. 2023. 851-866.
100 Weng, Chung-Yi, et al. "Humannerf: Free-viewpoint rendering of moving people from monocular video." Proceedings of
the IEEE/CVF conference on computer vision and pattern Recognition. 2022.
101 Zhang, Zechuan, Zongxin Yang, and Yi Yang. "Sifu: Side-view conditioned implicit function for real-world usable clothed
human reconstruction." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
102 pan, Panwang, et al. "Humansplat: Generalizable single-image human gaussian splatting with structure priors." Advances
in Neural Information Processing Systems 37 (2024): 74383-74410.
103 Shao, zhijing, et al. "Splattingavatar: Realistic real-time human avatars with mesh-embedded gaussian splatting."
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
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6.2.7 Methodology

With the intention of improving our GDNeRF, we substitute the probabilistic feature volume construction and
ZipNeRF¥ rendering scheme with a per-pixel Gaussian splatting prediction. In Figure 39, we show the main
components of GDGS. Specifically, GDGS consists of the following components:

Nearest

input Splatting
views 2D UNet : Predicted
S S s : ' Gaussian
parameters:
« Rotation
e Scale
+ Opacity
« Spherical
harmonics

Per-pixel 3D Gaussian
parameters prediction

(]

1S

Depth Camera L ‘ Render
maps parameters

Gausslan
centroids

Figure 39: From sparse views, our method extracts a set of feature maps which are transformed into per-pixel 3D Gaussian primitives. A
Gaussian rasterizer is used to synthesise the target view in real time, without the need of per-scene training.

e Nearest Input View Selection: Selects the input view that is closest to the target direction to be
synthesised.

e 2D UNet with Cross-View Attention: This module includes convolutional layers that extract features
from each input view independently, along with cross-view attention modules that enable information
sharing across views. The cross-view attention mechanism helps determine which features are important
in each view and how they can complement each other.

e Gaussian Prediction Layer: Based on the feature maps generated by the 2D UNet, a final layer predicts
per-pixel 3D Gaussian attributes, including position offset, rotation, scale, opacity, and spherical
harmonics. The final 3D positions of the Gaussians are obtained by computing 3D coordinates from depth
maps and camera parameters, then adding the predicted position offsets.

e Splatting: After applying the input mask to filter the per-pixel Gaussians, all remaining Gaussians are
merged into the scene and rendered using a Gaussian rasterizer.

104 Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., & Hedman, P. (2023). Zip-nerf: Anti-aliased grid-based neural
radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 19697-19705).
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6.2.2 Results

Our GDGS model is compared to GDNeRF and ENeRF, the current state-of-the-art method for generalizable
NeRFs. We present a detailed ablation study of the key components of GDGS and a comparison to previous
approaches in Table 13, evaluating performance in the ActorsHQ dataset. The results on the ActorsHQ dataset
fulfil the requirements of codes NF.156.1, NF.157.1 and NF.158.1 of the 3D Reconstruction Objective KPIs.

Table 13: Results on ActorsHQ for the different components of GDGS. Our model significantly outperforms ENeRF and GDNeRF. Even the
baseline GDGS already surpasses the performance of previous methods.

PSNR SSIM LPIPS

ENeRF 21.046 0.807 0.177
GDNeRF 26.568 0.911 0.097
GDGS 27.597 0.917 0.078
+ Completion 27.627 0.908 0.081
+ Position offset 29.746 0.923 0.041

+ Camera embeddings 31.805 0.938 0.011

The experiments of adding different components to GDGS are the following:

e Completion: We experiment with incorporating a completion module that processes the predicted
Gaussians to generate a new set of Gaussians aimed at filling regions not visible from the input views. To
achieve this, we adapt the architecture from PoinTr'% to handle the attributes of the 3D Gaussians and
produce an additional set of points. However, this approach vyielded limited results: the completed
regions appear unrealistic and tend to form smooth blobs, as illustrated in Figure 40.

e Position offset: Due to potential noise in camera calibration and/or input depth maps, we augment the
RGB input by concatenating the 3D positions of each point in world coordinates. This allows the model
to learn to adjust the positions of individual 3D Gaussians when necessary. The impact of this addition
on rendering quality is shown in Table 13 and Figure 41.

e Camera embeddings: Some scenes exhibit camera-dependent illumination conditions that are difficult
to model without incorporating environment- or camera-specific latent embeddings. To address this, we
concatenate Pliicker camera embeddings to the input, enabling the model to account for per-camera
illumination effects. These embeddings help the model correct illumination inconsistencies and fuse
features in a way that is independent of the specific camera's lighting conditions.

In Figure 42, we show an example of new view synthesis from 5 views for the Actor01 of ActorsHQ. In Figure 43,
we show the results of some free viewpoint frames from a video that we have visualized at 7 FPS with a dynamic
3DGS visualizer.

105 yy, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., & Zhou, J. (2021). Pointr: Diverse point cloud completion with geometry-aware
transformers. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12498-12507).
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Figure 40: Comparison of a rendered view with GDGS with and without the completion module. We use just 3 views spanning the scene,
in order to generate more occlusions. As can be seen, the completion module did not achieve what was initially intended.

No position offset Position offset

Figure 41: Comparison of a rendered view with GDGS with and without the position offset.

5 Input Views

GT View 1 Render 1 GT View 2 Render 2

Figure 42: Given 5 input views, GDGS renders a new view in a generalisable manner in real-time.
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Figure 43: Frames from an online dynamic 3DGS visualiser given 5 input views.

Additionally, we experiment with low-cost manual recordings with a few synchronized ORBBEC cameras. One
example of such a setup can be seen in Figure 44, for which we show some results in Figure 45.

)

) "sﬁ T
¢ - %

Figure 44: ORBBEC cameras example setup with projected point-clouds from the depth estimation. As can be seen, the algorithm needs
to model noise that comes from the depth sensor and the calibration.
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Figure 45: Real-time rendering results from GDGS in our few camera setup.

6.2.2.1 APl Implementation

The GDGS API provides an interface for training and running inference on GDGS-based models. It is built using
FastAPI, with asynchronous job handling through Celery and Redis. The endpoints and workflow are the same
as those in the GDNeRF API (see Annex | — Section 11.2).

6.3 RGB-D based real-time free-viewpoint-video

The Free Viewpoint Video (FVV) functionality provided by XReco is based on the FVV Live system® 97 This
technology allows its users to navigate freely around a scene controlling the position of a virtual camera. It is an
end-to-end system, covering capture of the scene, video transmission, virtual view synthesis and delivery to the
user. It can work in real-time with minimum latency.

The system is divided into 3 main modules: the capture, formed by the cameras and the Capture Servers; the
rendering module, which is in charge of rendering the virtual views requested by users; and a WebRTC® based
interface for users to connect to the system. It also offers a replay module that allows the playback of pre-
recorded FVV content. Figure 46 provides a schematic representation of the connections between components.
An in-detail explanation of these components was provided in D4.1.

106 pablo Carballeira, Carlos Carmona, César Diaz, Daniel Berjén, Daniel Corregidor, Julidn Cabrera, Francisco Moran, Carmen
Doblado, Sergio Arnaldo, Maria del Mar Martin, and Narciso Garciaa, “FVV Live: A Real-Time Free-Viewpoint Video System
with Consumer Electronics Hardware,” IEEE Transactions on Multimedia, vol. 24, pp. 2378-2391, 2022.
107 pablo Pérez, Daniel Corregidor, Emilio Garrido, Ignacio Benito, Ester Gonzalez-Sosa, Julidn Cabrera, Daniel Berjon, César
Diaz, Francisco Mordan, Narciso Garcia, Josué lIgual, and Jaime Ruiz, “Live Free-Viewpoint Video in Immersive Media
Production Over 5G Networks,” IEEE Transactions on Broadcasting, vol. 68, no. 2, pp. 439-450, 2022.
108 Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-Time Communication Use Cases and Requirements", RFC 7478,
DOI 10.17487/RFC7478, March 2015, <https://www.rfc-editor.org/info/rfc7478>.
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Figure 46: General architecture of the FVV Live system using WebRTC to deliver FVV to the user.

6.3.1 Virtual viewpoint selection for virtual scenario integration

The virtual view rendering pipeline of the FVV Live system has been updated to enable the integration of real-
time captured FVV content into virtual scenes'®. This approach enables inserting an external volumetric video
feed, that can be either live or pre-recorded, in real-time and requiring limited complexity to the users’ terminals.

The system follows a remote rendering approach, where the user transmits their point of view to the system and
a coherent virtual view is then synthesized. The synthesized view is displayed inside the virtual scene on a plane
that rotates to always face the user, which is an entity usually called billboard. While this integration is explained
in detail in the next subsection, Figure 47 shows an example of a virtual view inserted into a virtual scene.

Figure 47: FVV Live synthesised views (left-up) are sent to the user application containing the virtual scene (left-down). They are
displayed on a billboard (2D plane) inside the virtual scene (right).

109 Javier Usén, Victoria Mufioz, Carlos Cortés, Daniel Berjon, Francisco Moran, César Diaz, Jesus Gutierrez, Fernando
Jaureguizar, Narciso Garcia, and Julian Cabrera, “Real-time free viewpoint video for immersive videoconferencing,” in 2024
16th International Conference on Quality of Multimedia Experience (QOMEX), 2024, pp. 171-174.
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The decision of the viewpoint that the FVV Live Virtual View Renderer must choose to make the synthetic view
coherent with the virtual scene is made following the diagram in Figure 48. The client application communicates
the position of the camera and the billboard (X, Y and Z coordinates) and the horizontal field of view encoded in
a JSON message. The View Renderer then uses that information to compute the direction from where the client
application camera is watching the billboard and places the FVV virtual camera on the surface of a sphere around
the scene.

[ .... W\ Synthesized / -

~‘ . : View :
‘-—q

] : :
Billboard

: Camera :
Unity virtual i and Billboard
Camera : position

Unity Scene ; FVV Live Scene

Figure 48: Graphic scheme of the communication pipeline between the client application camera and the virtual camera from FVV Live
synthesised by the View Renderer.

The JSON message used to communicate the user position contains the following information:
e Position of the camera in coordinates of the virtual scene (X, Y, Z).
e Euler rotation angles of the camera in coordinates of the virtual scene (yaw, pitch, roll) in degrees.
e Camera field of view in degrees.
e Position of the billboard in coordinates of the virtual scene (X, Y, Z).

e  Extra parameters for functionality, such as communicating the radius of the sphere and pausing the video
when consuming pre-recorded content.

The complete process, presented in Figure 49, involves the following steps:

1. Given the position of the camera in the virtual scene (cynty), as well as of the billboard (¢gyqtar), the
Virtual View Renderer computes the direction from where the user is visualizing the avatars as simply:

CUnity — Cavatar

dUnity -

|CUnity - Cavatarlz

with | - |, representing the Euclidean norm of the vector used to normalize it.

2. The sphere around the FVV Live scene is defined with a parameter r (defined by the user) representing
the radius. The center of this scene (Cgcene) is then defined as the point at r distance from the central
reference camera:
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Cscene = €cama + 7 dcama

with €cam4 being the position of the centre reference camera and d 4 its forward vector.
3. To place the virtual camera on the surface of the defined sphere, its centre (Cyirtuqi) is defined as:
Cvirtual = Cscene T r(_dUnity)

4. Only the orientation of the virtual camera remains to be defined. FVV Live represents orientation using
rotation matrices, which can be built from an orthonormal basis formed by the direction vectors: forward
(fvirtual), UP (Wyirtual) and right (ryireual). To define this basis, dyyity is used as a starting point:

[virtual = dUnity

0
; Xu
Tyirtual = fVlrtual 14 with up = (1)
0

|fVirtua1 X up|2 ’

_ f Virtual X TVirtual
Uyirtual =

|fVirtua1 X Tyirtual |2

The vector Tyjrtual iS computed using the positive upward
direction (named up here) to ensure that avatars are always
rendered standing in place.

This approach was designed to obtain the following
advantages:

e The location of the avatars in the virtual scene is
independent of the FVV Live scene. This means that the
avatars can be placed anywhere on the virtual scene by
selecting where the billboard should appear.

e Similarly, the FVV viewpoint is independent of the camera
orientation (rotation). FVV always renders the avatars
standing in place, the client application engine is the one in
charge of handling their location and orientation based on ot
where the billboard is.

e Having the avatars fixed in place greatly reduces the effect
of motion-to-photon (M2P) latency. Since the location of
the avatars does not depend on the transmitted video, the effects of delay are much less noticeable.

Figure 49: Detailed diagram of the selection of the
viewpoint for FVV Live integration in virtual scenarios.

6.3.2 Integration of FVV Live feed with virtual scenarios

To develop experiences where FVV Live is integrated into virtual scenes crafted using 3D content retrieved from
the XReco platform, or generated with XReco tools, two communication pipelines have been developed which
allow the visualization of FVV Live real-time-captured scenes from applications built with Unity and Unreal.
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Both Unity and Unreal applications display the video received from the FVV system onto a billboard object in the
engine’s scene. This billboard uses a green-screen shader for seamless avatar integration and always faces the
camera through dynamic rotation. As users move around, the engine transmits updated camera and billboard
positions to ensure the correct synthetic view is received from the FVV. Both engines’ applications share a set of
different scenarios for the user to choose from dynamically and freely move around them, as well as a laboratory
scene (Figure 50) where the user can interact with the displayed objects while viewing the FVV video.

Oisconnect | it Ml

- L

Change Scene Reset Cam

Figure 50: Interactive lab scene in Unity3D (left) and in Unreal Engine (right).

6.3.2.1 Unity implementation

The main elements of this solution are the WebRTCConfiguration module, the camera movement script and the
billboard, named Quad_rot in Unity’s hierarchy (Figure 51) and responsible for rendering the FVV Live video.

The WebRTCConfiguration contains the script in charge of the connection establishment with the WebRTC
server. This module also manages the media reception: when a video or audio track is received, it is added to a
Mediastream. If it is a video track, its texture is applied onto the billboard of the scene. If it is an audio track, it
will be added to an Audiosource in the scene and played. This script is also responsible for sending JSON messages
to the FVV Live system with the Unity camera position, rotation, field of view and a few more parameters. These
messages are only sent when the camera is moving around the scene and also include a few parameters for extra
functionalities like “pause” and the FVV Live scene sphere radius (Figure 49) so it can be dynamically updated
from the Unity application.

The billboard has two main components: one that manages the texture rendering of the billboard and camera-
dependent billboard rotation; and a Chroma-Key shader that controls the Greenscreen effect, the mask colour
can be adjusted as well as its threshold sensitivity.
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Figure 51: Example of an FVV Live Unity project.

Regarding the communication architecture, the Unity application follows the main approach covered in previous
sections. As illustrated in Figure 52 the Unity application runs a WebRTC client, establishing a connection to the
WebRTC Server that relays the Free Viewpoint Video (FVV) to the user. To receive the appropriate synthetic view
from the FVV via the WebRTC, the Unity client transmits its camera and billboard positions as JSON-formatted
WebRTC data channel messages to the server, which transmits this information to the FVV system via UDP. To
successfully achieve this implementation, the Unity WebRTC plugin is used on the client side and aiortc, a Python
library for WebRTC, is deployed on the server.

RTP

— >UDP

" ">WebRTC Datachannel
WebRTC MediaTrack

i ters
Unity camera parameters r Un%
‘ /——$ >

Unity user WebRTC server

Figure 52: Unity3D implementation architecture.

Desktop (2D screen) and HMD Unity applications were developed to visualize FVV Live scenes. In these
applications, the user can choose dynamically between a set of different scenarios such as the Arco de Valentino
di Torino, a New York City square, the astrophysical observatory of Albert Einstein from Potsdam, a medieval
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banquet hall, a stage or the interactive laboratory just by clicking on the “Change Scene” button or pressing the
“B” button on the HMD controller.

In the desktop application, the user can freely move around the Unity scene by pressing the right mouse button
and using the WASD keys. An in-game screenshot is included in Figure 53. In the laboratory room the user can
interact with different displayed objects, just by getting close to the object and left-clicking over it, then the
object can be rotated using the left mouse button or be zoomed in/out using the mouse wheel.

Disconnect

/"

‘-I e

S

Change‘Scene E _‘._; Reset Cam
Figure 53: In-game screenshot of an FVV Live Unity-based application (left) and an HMD Unity-based application (right).

In the Unity HMD application, the user can freely move around the Unity scene either by physical movement
around the actual space where the user is placed or via teleportation. An in-game screenshot is included in Figure
53. In the laboratory room the user can interact with different displayed objects, just by getting close to the
object and pressing the “Secondary Hand Trigger” button on the HMD controller over it, once the user has taken
the object, it can be freely manipulated by the user.

6.3.2.2 Unreal implementation
The main elements of this solution are the Billboard blueprint, the Camera blueprint and the Stream Media
Source (MediaStream in Unreal’s content folder), which connects to the server and receives the FVV Live video.

The Billboard blueprint is responsible for sending JSON messages to the FVV system with the Unreal camera
information. These messages have the same format as the ones used by the Unity implementation. This blueprint
also manages the billboard rotation, so it always faces the camera.
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Figure 55: Example of an FVV Live Unreal project.
Regarding communication architecture, a i
different approach was developed since Unreal sl
does not provide a straightforward .

implementation of WebRTC. As illustrated in

Unreal comera parameters

Figure 54, the Unreal application runs an RTSP

Unreal user

client, establishing a connection to an RTSP!?

server that relays the FVV Live synthesized view FVV video
to the user. To achieve this, an ffmpeg module is
; 111 ; =
used to receive an RTP'** stream from FVV Live g
and send it to the RTSP server in the correct v Fifmpes

format. To receive the appropriate synthetic Figure 54: Unreal implementation architecture.
view from FVV Live, the Unreal client transmits

its camera and billboard positions as JSON-formatted UDP!'? messages directly to the FVV system.

The Unreal Desktop application functionalities are similar to those in the Unity application: the user can choose
dynamically between a set of different scenarios such as the Arco de Valentino di Torino, the astrophysical
observatory of Albert Einstein from Potsdam, a stage or the interactive laboratory just by pressing the “Space”
key. An in-game screenshot is included in Figure 56. The user can also freely move around the Unreal scene by
pressing the right click of the mouse and using the WASD keys.

110 Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time Streaming Protocol (RTSP)", RFC 2326, DOI 10.17487/RFC2326, April
1998, <https://www.rfc-editor.org/info/rfc2326>.
111 Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD
64, RFC 3550, DOI 10.17487/RFC3550, July 2003, <https://www.rfc-editor.org/info/rfc3550>.
112 postel, J., "User Datagram Protocol", STD 6, RFC 768, DOl 10.17487/RFC0768, August 1980, <https://www.rfc-
editor.org/info/rfc768>.
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Figure 56: In-game screenshot of the Unreal application.

6.3.3 Virtualized deployment of FVV Live components

The Virtual View Synthesis components (Stream selector, View Renderer and WebRTC Server modules) have
been virtualized as Docker images, enabling their deployment in cloud computing environments and edge
computing scenarios. This allows the management of several simultaneous users and/or contents by deploying
the necessary number of instances of each module. Additionally, a transmission simulation (FVV Replay) module
is available to deliver the same pre-recorded content simultaneously to several users. On the other hand, the
client applications are not provided as virtualized components since they are meant to run in user terminals.

6.3.3.1 Multiple user management

FVV Live follows a remote rendering approach, where each user requests their specific point of view to an
instance of the View Renderer. Three different approaches have been developed to manage multiple users, with
all of them involving the deployment of one instance of View Renderer per user:

e Live transmission: to manage several users visualizing a real-time capture feed simultaneously, the RGB+D
content is transmitted to the Stream Selector component, which is in charge of its distribution among all the
View Renderer instances. Users can communicate with their View Renderer through the WebRTC Server.
Figure 57 presents a diagram of this approach.

View Renderer 1
* View Renderer 2

Live
Camera Feed

View Renderer N
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= =

o =

User N

Figure 57: Diagram of the configuration designed to deliver real-time FVV content to multiple simultaneous users.

87

XReco is an HorizonEurope Innovation Project co-financed by the EC under Grant Agreement ID: 101070250.
The content of this document is © the author(s). For further information, visit xreco.eu.




XReco Project — Grant ID 101070250 D4.2 // XR & Media Transformation Services v2

e Pre-recorded content transmission (simulation): using the same configuration as in the Live scenario, the
FVV Replay module can be used to deliver pre-recorded content to multiple users. In this configuration, all
users would watch the same content in a synchronized way. Figure 58 shows this configuration.

View Renderer 1

View Renderer N

Transmission View Renderer 2 .
Simulation
(FVV Replay) -
User 2

User N
Figure 58: Diagram of the configuration designed to deliver the same pre-recorded FVV content to multiple simultaneous users.
e Pre-recorded content without transmission: View Renderer instances can function in “offline” mode, where
the RGB-D content is available in the host machine storage and can be accessed without network

transmission. This configuration allows users to consume content in a “video on demand” way, where each
user watches it at their own pace (Figure 59).

Pre-Recorded

Content View Renderer 1 .
User 1
Pre-Recorded View Renderer 2
Content
User 2

Pre-Recorded .

View Renderer N
Content -

User N

Figure 59: Diagram of the configuration designed to deliver pre-recorded FVV content as VoD to multiple users.

6.3.3.2 Multiple concurrent contents

In a similar way to the management of several users, several View Renderer instances can be deployed to
simultaneously deliver multiple different contents to one user. The system is flexible, allowing the combination
of both live and pre-recorded content. Figure 60 offers an example of a configuration to deliver live content and
two different pre-recorded contents to one user.
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Figure 60: Example of configuration capable of delivering several live and pre-recorded FVV streams to one user.

If enough computing resources are available, these two approaches can be combined to deliver multiple contents
to multiple simultaneous users.

6.3.4 Deep learning-based RGB-D content generation

The FVV Live capture module is heavily influenced by the RGB+D information captured by Stereolab ZED cameras.
They are consumer-grade stereo cameras with important limitations in their quality and flexibility, such as
providing fixed camera lenses and pre-determined resolution configurations (1080p or 720p). The aim to improve
the system quality and flexibility motivated the study of depth estimation techniques that could be applied on
any kind of camera setup.

Thanks to modern deep learning approaches, monocular depth estimation is now possible. State-of-the-art
models can estimate accurate depth information from only one RGB image, greatly reducing the complexity of
the setup and the amount of information to process per frame. We performed a study where we tested the
performance of three monocular depth estimation models applied to the FVV use case: Depth Anything V2113,
Depth-Pro* and UniDepth V2>,

To achieve this goal, a depth scale adjustment procedure based on multicamera calibration was designed to
make the estimation performed on every camera match the scale of the estimation on the rest of the cameras.
Figure 61 shows a diagram of the complete process.

113 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao, “Depth anything v2,”
arXiv:2406.09414, 2024.

114 Aleksei Bochkovskii, Ama“el Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen
Koltun, “Depth pro: Sharp monocular metric depth in less than a second,” arXiv, 2024.

115 Luigi Piccinelli, Christos Sakaridis, Yung-Hsu Yang, Mattia Segu, Siyuan Li, Wim Abbeloos, and Luc Van Gool, “UniDepthV2:
Universal monocular metric depth estimation made simpler,” 2025.
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Figure 61: Monocular depth for volumetric capture pipeline diagram.
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of every feature triangulated during the reprojection error distribution (right).

calibration process. Additionally, the resulting
calibration can be scaled making the distance between features match the square size of the calibration pattern,
obtaining a calibration with a scale similar to the real scene (in millimetres).

To analyse the quality of the calibration obtained, the reprojection error is studied. This error is computed by
reprojecting the 3D features back into their original images and comparing this new 2D position to their original
2D position. Figure 62 shows an example of camera calibration for a setup with 4 cameras, with the reprojection
error being mainly under 1 pixel.

Using the 3D position of the features and the camera calibration parameters, the depth values for each feature
are computed. These depth values can be used as a ground truth to fit a quadratic regression that yields a per-
camera depth scale adjustment that corrects inconsistencies in the estimation between cameras. The scale
adjustment can be leveraged in future captures to obtain RGB+D content coherent among all the cameras in the
setup. Figure 63 presents examples of scale adjustments performed with the three proposed models.
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(a) Depth Anything V2 (b) Depth Pro (c) UniDepth V2

Figure 63: Depth scale adjustment results for one camera using the three proposed models.

To evaluate the quality of the RGB-D information generated, the FVV live render algorithm was used to synthesize
virtual views corresponding to the reference cameras in the setup. As shown in Figure 63, for each camera and
frame, the reference viewpoint is rendered using the information from the closest 3 cameras, yielding a
reconstruction of said reference view. This reconstruction is then compared to its reference using 2D quality
metrics: PSN, SSIM and LPIPS. Figure 65 shows results of the rendering process.

> RGB+D

Reference camera
Reference camera —
FVV Live
View Synthesis

A j 0

A Synthetic camera view

Current camera

Reference camera Reference camera view

Figure 64: Diagram illustrating the rendering process performed for evaluation. The results are two corresponding images which can be
compared to obtain objective metrics.

For these experiments, the focus is on the reconstruction of the foreground elements (the people in the scene).
Thanks to FVV Live layered image synthesis, segmentation can be applied to the RGB-D material to only render
foreground elements. In this case, the segmentation was performed using the method proposed in D4.1 based
on Depth Anything!®. An additional segmentation mask is generated from the virtual views, indicating the

116 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead,
Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick, “Segment anything,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2023, pp. 4015-4026.
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rendered regions in the image. This mask is combined with the foreground mask of the reference view through
the union operation, and the result is applied to be able to consider only the foreground when computing the
metrics. Furthermore, we propose using the Intersection over Union (loU) between these masks as a metric, as
it reflects the degree of alignment between the reference view and the synthetic view.

(a) Reference view (b) Depth Anything V2 (c) Depth Pro (d) UniDepth V2

Figure 65: Images rendered using FVV Live and depth information obtained with the proposed pipeline.

The average results of the experiments are shown in Table 14. For all the metrics, the best performance is
obtained by UniDepth, which matches the quality shown by the examples on Figure 65.

Table 14: Monocular depth estimation for FVV experiments results.

Depth Anything 13.39+2.84 40.81 £7.50 0.13+0.07 56.22 +15.86
Depth-Pro 16.16 £ 2.57 54.25 + 8.65 0.08 £0.04 76.73 £11.22
Uni-Depth 18.27 £2.40 62.96 * 8.98 0.06 £ 0.03 86.97 £ 6.28

Additionally, Table 15 shows the result for the timing experiments performed using an NVIDIA RTX 4090. The
best performance again comes from UniDepth, being able to reach almost 20 fps for both resolutions. In the case
of Depth-pro and UniDepth, there are no significant differences when changing the resolution, since both models
perform a resizing operation before processing the input images.

Table 15: Monocular depth estimation timing experiment results.

Time (ms) FPS Time (ms) FPS

Depth Anything 292 3.34 1133 0.88
Depth-Pro 170 5.89 174 5.74
UniDepth 51 19.59 54 18.66

Based on the obtained results, UniDepth demonstrates compatibility with the FVV Live system and shows
potential for integration in specific use cases. However, the implementation of such integration lies beyond the
scope of the current project.
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6.3.5 End-to-End Tests

System performance was evaluated through a series of tests designed to meet the proposed requirements.
During these executions, performance indicators such as processing time per-frame (framerate) and transmitted
bitrate, were captured as log data. Three specific configurations were considered for this assessment:

e Live transmission of real-time RGB-D content.
e Simulation of transmission with pre-recorded RGB-D content.
e Pre-recorded content delivery using the VoD (offline) mode.

For the live transmission, the cameras were placed covering a range of approximately 100 degrees (NF.161.1),
capturing at 30 fps (NF.120.2 and NF.122.2) with resolution of 1080p (NF.160.1). In those cases where pre-
recorded contents were used, they were post-processed to enhance the segmentation quality with the deep
learning-based approach proposed in D4.1. The enhanced segmentation greatly reduces the transmission bitrate,
since only the essential depth information is transmitted.

The sequences used for evaluation involved a person standing in the middle of the scene talking. In the live
transmission experiments, the peak recorded transmission bandwidth was 55 Mbps per camera, using real time
green screen segmentation. For the simulated transmission, the peak bandwidth was reduced to 15 Mbps per
camera thanks to the enhanced segmentation. Both results fulfil requirement NF.162.1.

Regarding rendering resolution and framerate, Figure 66 shows the rendering time results for the live and VoD
tests rendering at a resolution of 1080p (NF.164.1) using an NVIDIA RTX 4090. In the VoD case where there is no
transmission, the renderer does not need to wait to receive, so the rendering is only limited by the computing
capabilities and reaches up to 500 fps (NF.163.1). For the Live transmission, the rendering framerate is limited
by the transmission to 30 fps. In this case and since cameras can only be synchronized by software, time
misalignments between video streams can produce frame-drops that slightly reduce the average framerate of a
scene. In this experiment, the average framerate was 29.1 fps.
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Figure 66: Rendering time measurements for the FVV Live end-to-end tests.
Finally, sequence visualisation was tested using the FVV Live web console and a Unity scene, both of which allow
for 6 Degrees of Freedom (DoF) navigation (NF.165.1).
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6.3.5.1 Several users and contents tests

In order to fulfil requirements 131.1 and 132.1, FVV Live rendering modules were virtualised, and their
deployment can be orchestrated as explained in Section 6.3.3. These approaches were tested on 4 servers each
one with an NVIDIA RTX 4090. Each server could support the rendering capabilities needed by 3 users, with 12
concurrent users in total. Combination of real-time capture and pre-recorded content was also tested, with 3
servers managing the volumetric capture and one the rendering of both the live transmission and one pre-
recorded content. Figure 67 shows an example of two simultaneous web consoles controlling their own virtual
camera to visualize the same content from different points of view.
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Figure 67: Two concurrent FVV Live web console clients visualizing the same content from two different points of view.

6.3.5.2 Latency analysis

Latency measurements have been carried out to get the most significant metrics about these implementations.
These tests’ results are shown in Table 15, where the Motion-to-Photon latency main metrics are illustrated. The
requirements NF.119.2 and NF.121.2 are satisfied in all cases.

Table 3: FWV Live M2P latency analysis

Unity Desktop 240 33
Unity HMD 217 45
Unreal (desktop) 244 29

The process to obtain these metrics is as follows: a variation of the original Unity/Unreal application was
developed so the camera position messages are only sent when a specific button is pressed. The timestamp of
the button-pressing is registered and compared to the one corresponding to the new view. An example of this
process is illustrated on Figure 68.
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Figure 68: Screenshot of M2P measurements carried out on the HVD.

The Unity and Unreal Desktop measurements were run on an Asus Expertbook laptop with the following main
technical specifications:

- Processor: 13th Gen Intel(R) Core(TM) i7-1355U, 1700 Mhz, 10 Core(s), 12 Logical Processor(s)
-  32GBRAM
- Intel(R) Iris(R) Xe Graphics Card

While the HMD measurements were run on a Meta Quest 3 Headset:

- Processor: Octa-core Kryo (1 x 3.19 GHz, 4 x 2.8 GHz, 3 x 2.0 GHz)
- 8 GBRAM
- GPU: Adreno 740

6.4 RGB-D based real-time holoportation

Volumetric capture systems utilize multiple cameras positioned around the capture area to record images from
various viewpoints. This setup enables comprehensive coverage of a human subject, resulting in a true 360°
video. It also helps compensate for occluded or missing areas that may not be visible from a single camera's
perspective, as illustrated in Figure 69. This section describes multi-view camera calibration pipelines in the
context of real-time holoporation (see D4.1 — Section 6.3).

Figure 69: Effect of shadows from a single view reconstruction.

The system developed by i2CAT leverages cameras capable of capturing dense depth information in real time,
along with colour data, to reconstruct a 3D subject using input from a single camera. A transformation is then
applied to each geometric dataset to align and integrate them into a cohesive 3D reconstruction. This
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reconstruction is subsequently compressed and transmitted over the network to the client side, where it is
decompressed and rendered, enabling remote viewing of the captured scene.

Two key aspects of the capture side of the pipeline we are tackling and improving as part of this project are the
cameras used and the calibration procedure.

As part of the development effort, we implemented a recording pipeline enabling the generation of datasets that
allow the reproduction of the whole reconstruction pipeline without the cameras or reproduce pre-recorded
videos converting this pipeline into a possible new source of 3D assets. Moreover, this allows to record datasets
with more cameras than what is supported for the real-time pipeline, but that can be tested and used as input
for other off-line 3D reconstruction pipelines.

6.4.1 Automatic calibration

RGB-D sensors compute the spatial coordinates of each visible point relative to their own local coordinate
system. Typically, the origin is located at the centre of the camera lens, with the z-axis extending outward from
the camera and the xy-plane aligned with the camera's image plane. However, to generate a unified 3D
reconstruction from multiple viewpoints, the individual 3D representations must be transformed into a common,
coherent coordinate system. This transformation process is relevant even in single-camera setups, as the
coordinate system used for visualisation (e.g. in software environments like Unity3D) may differ. For instance,
Unity assumes the origin is located on the floor with the y-axis oriented vertically.

This process known as extrinsic calibration, or simply calibration involves determining the transformation
matrices for each camera that align their respective point clouds into a unified 3D reconstruction. Broadly,
calibration requires solving two main problems: identifying corresponding points across different views and
computing the transformations that best align them. One of the most widely used algorithms for aligning point
clouds is the Iterative Closest Point (ICP)! algorithm. ICP works by iteratively minimizing the distance between
points in overlapping point clouds to achieve alignment. In the context of this project, our focus has been on
improving the point selection process for calibration.

Previously, reference points were selected manually on a known object placed at the centre of the capture area.
For each camera's point cloud, five points were manually identified and used for alignment. This approach was
slow, labour-intensive, and prone to human error, as the selection was subjective and performed on inherently
noisy data (see Figure 71-left). To improve this method, we explored automatic point detection approaches.
These methods rely on placing a known object - commonly referred to as a calibrator - within the capture area,
ensuring it is visible to all cameras. The calibrator must be easily reproducible, interpretable by software, and
generally consists of high-contrast geometric patterns in black and white. Automatic detection not only reduces
human error but also allows for a greater number of reference points per view, improving the robustness of the
resulting alignment. A classic example is the use of a chessboard pattern: it is high-contrast, symmetrical, and
contains numerous identifiable corners. However, its repetitive pattern makes it difficult to distinguish
orientation, and its flat, single-sided nature limits visibility when cameras are placed at opposing angles.

117's, Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In 3-D Digital Imaging and Modeling, 2001.
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A more advanced alternative involves using ArUco!® markers. These are square fiducial markers with a black
border and a binary-coded interior arranged in a grid. Each marker contains an ID and error-checking bits,
allowing for unique and orientation-invariant detection. ArUco markers can be used as standalone features or
integrated into larger calibration patterns, such as ArUco boards or even 3D objects covered in ArUco markers.
The latter approach is particularly effective for complex multi-camera configurations, as different cameras may
detect different markers while still contributing to a unified coordinate system (see Figure 70).

Figure 70: Cube with ArUcos detected with OpenCV (left), cuboid used in Medeiros et al. (centre), and cube used in Moreira et al. (right).

The specific object we ended up implementing is the one seen on Figure 71-right. It uses 6 markers per face and
has a front and back face pasted to a rigid box. The markers are printed on a standard A3 sheet, which is easy to
reproduce everywhere, and the width of the ground reference object is easy to adjust by running a simple script
with the actual width of the box used. Figure 72 presents calibration results on the final merged point cloud.

W7 Pick points on 000628515312 - free view = o x

4
¢
e

Figure 71: Example of manually selected points for calibration (left), calibration object and detected markers in the automatic calibration
(right); The four corners of each marker are detected and used as reference points.

118 5, Garrido-Jurado, R. Mufioz-Salinas, F.J. Madrid-Cuevas, and M.J. Marin-Jiménez. Automatic generation and detection
of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6):2280-2292, 2014.
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(a) Manual procedure (a) Automatic procedure

Figure 72: Calibration results with (a) manual and (b) automatic multi-view calibration pipelines.

6.5 3D Face Reconstruction

The following workflow was established for the generation of Synthetic Humans, aimed at minimizing human
intervention and ensuring an efficient and flexible process exploiting RAI's extensive archive of images and
videos. A practical application of this methodology was demonstrated within the RAI News Media Demonstrator
(D5.1 - Section 2), which featured the 3D reconstruction of Guglielmo Marconi as an Unreal Metahuman.

6.5.1 Automated 3D Facial Model Reconstruction from 2D Images

The creation of realistic, high-fidelity 3D models of human faces is a complex task that traditionally requires
significant manual intervention, specialized artistic skills, and expert knowledge of sophisticated modelling
software. A key objective within WP4 was the automation of this process, focusing specifically on generating a
3D model of an individual's face from a limited set of 2D reference images. To streamline and automate this
procedure, we have engineered a solution built upon FaceBuilder'®, a plugin for Blender!?®. Our approach
leverages the core capabilities of FaceBuilder to produce a high-quality base mesh of the face while abstracting
away the manual steps typically required. By utilising artificial intelligence, the plugin can automatically deduce
the correct configuration and parameters for the virtual cameras corresponding to each input photograph. The
selection of FaceBuilder as the foundational technology for our reconstruction pipeline was motivated by several
key features, most notably its highly accurate, automatic alignment of facial key-points (fiducial markers) across
different photograph:s.

6.5.2 Methodology: Leveraging FaceBuilder for Facial Reconstruction

To maximize efficiency and eliminate the need for manual interaction with the Blender interface, we developed
a custom Python script that automates the entire FaceBuilder workflow. This script serves as a command-line

119 https://keentools.io/products/facebuilder-for-blender
120 https://www.blender.org/
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tool that programmatically executes the necessary steps for mesh creation, significantly simplifying the process
for the end-user.

The script's core functionalities include:

e Head Creation: Programmatically initializes the base 3D head model within the environment.

e Image Ingestion: Automatically imports the provided reference photographs.

e Camera and Pin Alignment: Leverages the FaceBuilder APl to automatically place and align the virtual
cameras for each image and configure the facial pins, which is the most critical step for ensuring an accurate
likeness.

o Texture Generation: Creates and bakes the final facial texture map from the aligned source images.

The primary outcome of this development is a fully automated process for generating high-quality 3D facial
meshes. This scripted approach minimizes human intervention, ensuring an efficient, flexible, and scalable
creation process, making it accessible to operators without prior experience in 3D modelling or Blender, thereby
greatly enhancing the efficiency of our overall character creation pipeline.

6.5.3 Experimental results

This section details the comprehensive evaluation conducted to assess the reliability, robustness, and fidelity of
the synthetic human generation workflow. The primary focus was on quantifying and qualifying the similarity
between the generated Synthetic Humans and their corresponding reference characters, utilizing both objective
computational metrics and subjective human perception.

6.5.3.1 Test Material Preparation

To ensure a robust validation, a representative dataset of 9 individuals was curated (Figure 73). This dataset was
explicitly designed to encompass a broad spectrum of demographic attributes, including diverse ethnicities, age
groups, and genders. This diversity aims to demonstrate the workflow's capability to accurately reflect traits
representative of the global population. For each character, 80-100 original images were collected from the RAI
archive, depicting a wide range of poses, expressions, and camera distances (close-ups to long shots). This image
set was used to fine-tune a Stable Diffusion model, enabling the generation of novel Al images for each reference
character.
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Monica Bellucci

Maria Callas Sadie Sink Fiona May

Figure 73: Reference dataset of 9 individuals used for 3D model and texture validation.

6.5.3.2 Test Material Preparation

The automated script generated a 3D head mesh for each individual using both original images and Al-generated
images. This mesh can be used in any 3D software, but in our case, it served as the basis for the creation of a
MetaHuman (MH) in Unreal Engine.

Evaluation Metrics:

e Objective: Cosine similarity of 512-dimensional face embeddings extracted using ArcFacel21.

e Subjective: An online survey with 46 participants assessed perceived realism and similarity. Participants
rated resemblance (1-5 scale) and selected the most realistic textures from visual comparisons.

e Comparisons were made between:
o Original images vs. Al-generated images.
o Original images vs. rendered 3D head meshes.

6.5.3.3 Test Results
Stage 1: Al-Generated Image Fidelity

e Objective (Cosine Similarity): Embeddings from Al-generated images consistently showed Cosine similarity
> 0.5 (Figure 74) when compared to original images. This threshold indicates a high probability that the
images represent the same individual.

21 Jing Yang Niannan Xue Irene Kotsia Jiankang Deng, Jia Guo and Stefanos Zafeiriou. Arcface: Additive angular margin loss
for deep face recognition. https://arxiv.org/pdf/1801.07698v4.pdf.
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e Subjective (Survey): Participants rated Al image resemblance to the original character on a 1-5 scale. 68% of
responses assigned the highest score (5), demonstrating strong perceived visual fidelity.

3

Subject Al image Subject Al image Subject Al image
cosine similarity [-1,1] 0.7093 cosine similarity [-1,1] 0.6754 cosine similarity [-1,1] 0.6754

v

Subject Al image Subject Al image Subject Al image

cosine similarity [-1,1] 0.7040 cosine similarity [-1,1] 0.6441 cosine similarity [-1,1] 0.6033

Figure 74: Cosine similarity scores between ArcFace embeddings of original images and corresponding Stable Diffusion generated
images.

Stage 2: 3D Head Mesh Fidelity

e Objective (Cosine Similarity): Comparisons between original images and rendered 2D views of the
reconstructed 3D mesh yielded cosine similarity scores approaching 0.5 (Figure 75). A slight decrease
compared to Stage 1 was observed, attributable to inherent differences between 2D photos and 3D renders,
and variations in pose within the original images.

e Subjective (Survey): Participants rated the 3D mesh resemblance to the original character. 33.82% assigned
the highest score (5) and 29.95% assigned a score of 4, indicating a strong majority (63.77%) perceived high
or very high similarity.
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3

Subject 3D Mesh Subject 3D Mesh Subject 3D Mesh
cosine similarity [-1,1] 0.3459 cosine similarity [-1,1] 0.5345 cosine similarity [-1,1] 0.4472

3

i

[ 4

Subject 3D Mesh Subject 3D Mesh Subject 3D Mesh
cosine similarity [-1,1] 0.4335 cosine similarity [-1,1] 0.4201 cosine similarity [-1,1] 0.3283

Figure 75: Cosine similarity scores between original images and rendered views of the reconstructed 3D head meshes.

6.5.3.4 Conclusion on the evaluation

The evaluation demonstrates the robustness of the synthetic human generation workflow:

1. High-Fidelity Al Generation: Stable Diffusion, fine-tuned on diverse character images, produces 2D outputs
with high objective (Cosine Sim. > 0.5) and subjective (68% top rating) similarity to reference characters.

2. Accurate 3D Reconstruction: The automated pipeline generates 3D head meshes that retain significant
fidelity to the original subjects, confirmed by objective metrics nearing the recognition threshold and strong
subjective ratings (63.77% scores 4 or 5).

3. Workflow Robustness: The process proved effective across a demographically diverse dataset, indicating
its potential for broad applicability.

7 Asset Aggregation and Optimisation services

This section presents enhancement and optimisation technologies that improve the quality and usability of
multimedia assets within XReco. These services address the challenges of transforming content of varying quality
into professional-grade assets suitable for XR applications and broadcast production.

The services encompass 2D video upscaling for resolution enhancement of legacy content, blind face restoration
for improving degraded facial imagery, human-centred point cloud super-resolution with gap-filling capabilities,
and 3D content generation enabling text-to-3D asset creation.
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7.1 2D Video Upscale

The 2D Video Upscale component is a super resolution technique for improving the visual quality of 2D urban
video content, i.e., videos depicting scenes of buildings, city landscapes, and monuments. This component relates
to the requirement NF88.2 (“It MUST be possible to enhance the 2D Multimedia Shared Material using Al-based
techniques”) of the XReco system.

7.1.1 Motivations and related work

Recent advances in Computer Vision, driven by Al research, have enabled innovative applications including
generative Al tools for video and image generation. However, challenges remain in broadcast environments,
particularly regarding video resolution and temporal coherence for professional use.

Traditional video enhancement relies on classical upsampling filters (bilateral, bicubic), which struggle to
preserve details at high magnification factors (4x or more), often producing artifacts or blurred results. Al-based
Video Super Resolution (VSR) addresses these limitations by leveraging spatio-temporal information to generate
high-resolution videos from low-resolution inputs while maintaining perceptual quality.

Key challenges:

e Generalisation: VSR algorithms perform inconsistently across diverse content types (nature, sports,
cartoons).

e Training complexity: Performance depends heavily on datasets, architectures, batch size, augmentation
strategies, and sequence length.

e Computational demands: Execution time and memory consumption limit real-time deployment in business
context.

Comparing VSR algorithms like EDVR?? BasicVSR++2® or RVRT*?* requires standardised datasets and evaluation
protocols. Video Quality Assessment (VQA) employs two approaches:

e Subjective assessment: Human observers rate quality against ground truth following ITU BT-500 guidelines
(0-10 scale)125, 126. Though reliable, this method is expensive and time-consuming.

e Objective metrics: Automated quality assessment using Full-Reference metrics (PSNR, SSIM, VMAF)
comparing against originals, or No-Reference metrics (LPIPS, BRISQUE) analysing statistical features. MS-
SSIM and VMAF are widely considered most reliable.

122 EDVR: Video Restoration with Enhanced Deformable Convolutional Networks - https://arxiv.org/abs/1905.02716 (last
accessed June 06th, 2025)

123 BasicVSR++: Improving Video  Super-Resolution with Enhanced Propagation and Alighment -
https://arxiv.org/abs/2104.13371 (last accessed June 06th, 2025)

124 Recurrent Video Restoration Transformer with Guided Deformable Attention - https://arxiv.org/abs/2206.02146 (last
accessed June 06th, 2025))

125 ITU BT500 Recommendations - https://www.itu.int/rec/R-REC-BT.500 (last accessed June 06, 2025)

126 ITU BT500 Recommendations - https://www.itu.int/rec/R-REC-BT.500 (last accessed June 06, 2025)
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While objective metrics offer speed and repeatability crucial for development, they may not fully capture human
perception. Optimal evaluation combines both subjective and objective approaches to ensure comprehensive
quality assessment.

7.1.2 Model fine-tuning procedure

This section briefly introduces Real-Basic Video Super Resolution (RBVSR)'?” the Al-based VSR solution of this
experimentation? followed by a description of our approach.

VSR algorithms could be designed following different architectures and network topologies (e.g. CNN,
Transformer, RNN, etc.). RBVSR is a deep neural network composed of a first denoising stage for suppressing
artifacts and visible defects of LR frames at the beginning of the process to avoid their temporal propagation
before being introduced to the VSR module. In this case, the VSR core network is called BasicVSR. The public
model and the network’s structure were designed and developed only for 4x upscaling. For example, an input
video sequence having a native resolution of 960x540 can be enhanced and upscaled to a final resolution of
3840x2160. RBVSR was trained on the REDS dataset129 and evaluated on a custom dataset, called VideolQ,
following a two-stage strategy. In the first stage, the network was pre-trained for 300K iterations using the
Charbonnier loss (a mix between the L1 and L2 loss) for both fidelity loss and image cleaning loss. In the second
stage, the “base” model is finetuned adding perceptual loss and adversarial loss for 150K iterations following a
GAN-based approach.

The goal of our study is twofold: trying to improve the performance of the public 4x model for our use case and
expanding the application perimeter with a new solution for the 2x upscale case that in our opinion could be the
most appreciated and requested by users within the upscaling solutions offered by the XReco platform.

Our approach consists of two steps. In the first, we studied the algorithm, the scripts and ran a bunch of tests to
check the reliability of the starting point. Then, after the definition of a custom dataset, we tried to understand
if and how each tuneable parameter of the training script could influence the behaviour of the network. Loss
functions, batch size, sequence length, optimiser configuration were considered and, last but not least, the data
for both training and evaluation. Obviously, data plays a key role during the development of an Al-based
algorithm. As already mentioned, we created our own 4K video dataset consisting of 50 clips with a resolution of
3840x2160, 5 seconds each and a total of over 5,5K frames. Videos were carefully selected and extracted from
our drone footage database mainly representing urban scenes and landscapes with a wide variety of information
and details that are essential for these applications. For the 4x case, there were 2 options: starting a training
process from scratch or resuming the existing model and working on its refinement. Once 3 video sequences and
4 objective metrics for the models’ evaluation had been selected, we decided to proceed directly with the second
option because of the time constraints imposed by the project. We conducted several tests with different
configurations until we reached our scope. In our experience, the most impactful training variables are

127 Chan, Kelvin C.K. and Zhou, Shangchen and Xu, Xiangyu and Loy, Chen Change, “Investigating Tradeoffs in Real-World
Video Super-Resolution”, IEEE Conference on Computer Vision and Pattern Recognition, 2022.

128 The source code is available at https://github.com/ckkelvinchan/RealBasicVSR/tree/master (last accessed June 06th,
2025)

129 seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee, “NTIRE
2019 challenge on video deblurring and super resolution: Dataset and study”, In CVPRW, 2019. 2, 7
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represented by sequence length, crop shapes and loss functions. Unlike the Single Image Super Resolution (SISR)
application, where there is only one image to elaborate, VSR algorithms take advantage of multiple data sources
represented by a chain of subsequent frames. In other words, the more information correlated is available for
training (i.e., sequence length), the better the algorithm’s performance is. Furthermore, the variation of loss
functions has been evaluated during our experiments and, as we will see in the next section, this approach in
some cases could be useful to improve the numerical accuracy of this kind of algorithms.

Alongside the study done in the first phase, we decided to move a step forward by adding a new service based
on the same network. As said before, a 4x upsample could be excessive in many situations where users may need
a simple 2x upscale of a given video before the invocation of subsequent processing pipelines (like for example,
another service offered by the XReco platform). The adaptation for the 2x case required a light lifting of the
network’s architecture mainly consisting in the drop of an upsample layer. The operation is the same as before:
for example, an input video sequence having a resolution of 960x540 is now upscaled by a factor of 2 to obtain
a final video resolution of 1920x1080. We have not mentioned the video framerate as it remains untouched like
the input video sequence. The only variation between input and output is the resolution. In this second part of
the study, as in the previous stage, we started from the public 4x model and refined it with our settings and
dataset. The main difference is that during the evaluation phase, our 2x model is compared with the bicubic
filter, one of the most used non-learnable filters, while in the first step we decided to double check both the
original 4x model and the bicubic filter too.

Finally, we apported some improvements to the original inference script in order to optimize the whole
procedure and obtain better memory management.

7.1.3 Experimental results

Table 16, Table 17, and Table 18 present the experimental results achieved for the different settings described
in the previous section. The metrics used for evaluation are PSNR, SSIM, MS-SSIM and VMAF. For PSNR and SSIM
we assessed the quality on the luminance (Y) channel.

PSNR is a pixel-wise metric based on the Mean Square Error (MSE) and the absolute difference between images.
The higher the PSNR value, the better the image quality. This is one of the most used metrics even if it does not
correlate well with the human visual system. SSIM relies on structural similarity and considers other features,
such as contrast and brightness. MS-SSIM is an extension of SSIM, where MS means Multi Scale. Here the
similarity is considered across different scales and resolutions of images. For both SSIM and MS-SSIM the higher
the final score, the better the image quality. VMAF tries to predict the subjective quality of a video by combining
several assessment methods based on machine learning and fusing multiple metrics. The power of this metric is
both the ability to emulate the perception of the human visual system and to support different viewing
conditions, such as mobile devices or 4K TVs. The score is represented on a scale 0-100, where 100 means perfect
correlation between the reconstructed image and the original one.
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Table 16: Comparison between original model and our finetuning for the 4x case.

METRIC ORIGINAL MODEL 4X FINETUNING

Y-PSNR 29,50 30,19

Y-SSIM 0,84 0,86
MS-SSIM 0,94 0,95
VMAF 4K 83,92 83,45

Table 17: Comparison between classical non-learnable filter and our finetuning for the 4x case.

METRIC BICUBIC FILTER 4X FINETUNING
Y-PSNR 30,23 30,19
Y-SSIM 0,83 0,86
MS-SSIM 0,94 0,95
VMAF 4K 62,69 83,45

Table 18: Comparison between classical non-learnable filter and our finetuning for the 2x case.

METRIC BICUBIC FILTER 2X FINETUNING

Y-PSNR 36,65 34,61

Y-SSIM 0,95 0,95
MS-SSIM 0,99 0,99
VMAF 4K 95,55 99,80

Among the 4 presented metrics, the one with the strongest correlation with the human evaluations is VMAF,
followed by SSIM/MS-SSIM and PSNR. Table 18, for example, clearly shows the “conflict” between VMAF and
PSNR scores. Obviously, both are relevant but as stated before we consider more reliable VMAF than others.
The 4-points range of Table 18 for the VMAF scores (95,55 vs 99,80) probably reflects the humans’ eyes quality
perception of the 2 upscaled videos, while if it were small or too small, such as the slight differences shown in
Table 16, (83,92 vs 83,45), subjective tests probably struggle to find any variation.

The average scores shown on the tables above are represented with three different colours: RED is the worst
value, BLUE is the best value, and GREY is the case of equivalence.
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Table 16 collects the results related to the comparison between the original RBVSR model and our finetuned
model for the 4x super resolution case confirming that the finetuning process could often lead to better
performance, as expected, even if the difference is not so high in terms of scores. Our finetuning improves the
baseline in all cases except for the VMAF 4K where the difference is very small (83,92 vs 83,45). Figure 76
reflects the average scores collected from Table 16 and highlights the differences that could be detected also
by non-expert eyes. The finetuned model outperforms the baseline even if only slightly, and the image clearly
shows this similarity. The quality of both 4x models is awesome. The image is a crop of a selected frame rich in
details, representing a square from the drone’s point of view. The higher performance of the finetuned model
may be appreciated in the central part of the image where a lot of details almost disappear during the
upscaling process with the original 4x model. Also, the statues are better represented but, as said before, the
final upscaled images look similar. In this first case, the winner is the optimized model because of the slight
improvements shown, as confirmed by 3 out of 4 metrics.

(b)

Figure 76: Comparison between original model (a), our finetuning (b), and original frame (c) on 4x upscale case (zoom in for better view).

Figure 77 shows a comparison between our optimized 4x model and the bicubic filter. The power of Al-based
VSR tools lies in their better details' handling and this image, supported by Table 17, clearly shows this large
difference. Despite the scores’ correlation for both PSNR and SSIM/MS-SSIM, the most impactful difference is
represented by VMAF scores which confirm again that our model seems to be much more accurate in terms of
image quality and details when the upscale factor is high, as in this case. Theoretically, the slight difference in
PSNR or SSIM values is a plus if we consider merely the numbers as one would do in a challenge, but in practice,
the perceived quality should be basically the same and people watching their comparison probably won’t notice
any difference. However, this is not the case because of the large gap between the VMAF scores. In fact, the
sharpness across the whole frame generated by our model is incredible. Every element of the image is
represented with greater fidelity. As in the previous experiment, in this second comparison the winner is our
finetuned model.
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Figure 77: Comparison between bicubic (a) and our finetuning (b) on 4x upscale (zoom in for better view).

As stated before, the upscale multiplier is fundamental. The ability of classic upscalers decreases with the
increase in value. A 2x upscale is easier to execute than a 4x because the stretching process is lighter, and
therefore the number of artifacts that could be introduced is lower than in the 4x upscale case. The average
scores represented in Table 18 support this thesis and the compared frames appear similar even if the details
are better represented by our finetuned model (see the white railings on the roofs, in Figure 78). The two
contenders perform mostly the same in terms of SSIM and MS-SSIM, while PSNR and VMAF 4k shows contrasting
views highlighting once again how metrics can sometimes behave differently. The finest details could be lost by
classical non-learnable filter during the upscaling process and in general the sharpness and contrast of images
may be negatively affected, as can be noticed in Figure 78. At the same time, some metrics are not able to detect
these slight differences because their values are the results of other evaluations or mathematical formulas that
are not directly correlated to the characteristics that human eyes find when looking at the images. The PNSR in
this third comparison is 2.0 dB higher for the bicubic case. If the priority were simply numerical accuracy, we
could have used the MSE loss function to refine the model getting as close as possible to that score. Generally,
when sharpness or the details’ preservation is the priority, the L1 loss is the right choice. In this experiment we
decided to put more emphasis on VMAF and on image quality rather than the simple numbers. Figure 78 clearly
shows our approach: the perceived quality is higher for RBVSR than bicubic, and details like the white railing,
remain almost as sharp as the ground truth. This consolidates once again the power of the proposed model, even
if in this third case the visual difference is not so high as in the previous comparisons.
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(b)

Figure 78: Comparison between bicubic (a) and our finetuning (b) on 2x upscale case (zoom in for better view).

7.1.4 Deployment and integration in the XReco platform

This component is built using docker-compose and provides the following services:

e api_app: This container runs the FastAPI backend, which acts as a middleware between the user’s requests
and the video upscaling process.

e celery_worker: This is the schedule for the jobs called by the API. This is the main backend component that
runs the video upscale processes as asynchronous tasks.

e redis: Message broker and database for the queue and jobs. It manages the communication between the
APl and the Celery task executor.

The process workflow works as follows:

1. Upload a video to process to the server by calling the /upload API endpoint.
Request to process an uploaded video by calling the /process APl endpoint. The user can specify the desired
upscale factor (x2 or x4), and output (a new video or still keyframes).

3. Poll the API to check the status of a processing task, by calling the /tasks/{task_id} APl endpoint.

4. Download the upscaled video/images, by calling the /download/{id} APl endpoint.

5. Download a preview image of the upscaled video/images by calling the /preview/{id} APl endpoint.

7.2 Blind Face Restoration

In the creation of high-fidelity 3D avatars, the quality of the facial texture map is paramount. These textures are
often derived from 2D images which may suffer from low resolution, compression artifacts, or other forms of
degradation. To address this challenge, a key component of our work involves the use of Single Image Super-
Resolution (SR) techniques. SR is a class of image processing methods designed to generate a high-resolution
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(HR) image from a single low-resolution (LR) counterpart. The primary objective is to restore high-frequency
details that were lost during the image acquisition or compression process, leading to a significant enhancement
in perceptual quality.

For the specific context of this project, which targets the generation of realistic 3D facial avatars, a specialized
super-resolution method was investigated and implemented. The focus was on the effective upscaling and
enhancement of facial textures to ensure that the final 3D models exhibit lifelike and detailed appearances.

This component relates to the requirement NF88.2 (“It MUST be possible to enhance the 2D Multimedia Shared
Material using Al-based techniques”) of the XReco system.

7.2.1 Investigated Method: Generative Facial Prior GAN (GFP-GAN)

The method selected for facial image super-resolution is the Generative Facial Prior GAN (GFP-GAN)®°. This
technique was designed for blind facial image restoration, where the degradation in the source image is
unknown. GFP-GAN excels at achieving an optimal balance between the realism of the generated face and fidelity
to the original subject's identity.

This balance is crucial for our application, as the goal is not only to create a visually appealing texture but also to
ensure that the identity of the individual is accurately preserved in the 3D avatar. GFP-GAN's capability to deliver
high-quality results stems from its use of a rich and diverse knowledge base of facial characteristics, which is
embedded within a pre-trained generative network that acts as a facial prior.

7.2.2 Applications and Project Relevance

Within the scope of this project, GFP-GAN is directly applied to the task of 3D avatar creation. By processing low-
resolution facial photographs, e.g., taken from RAIl archive, the technique generates high-quality, detailed
textures that can be mapped onto 3D head models. This results in avatars with a significantly higher degree of
realism and visual fidelity. A practical application of this methodology was demonstrated within the RAlI News
Media Demonstrator, which featured the 3D reconstruction of Guglielmo Marconi as an Unreal Metahuman. To
achieve a high-quality result, historical photographs from different sources, such as the RAIl archives, were
processed and upscaled with the described super-resolution approach, yielding a significantly improved facial
texture for the final avatar, as shown in Figure 79. The successful implementation of GFP-GAN represents a
significant step in our pipeline for generating next-generation, realistic 3D digital humans.

130 https://github.com/TencentARC/GFPGAN
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AU
Figure 79: Comparison of the original face (left) and the restored face (right). The original face was extracted from:

https.//www.raicultura.it/cropgd/900x520/dl/img/2022/11/08/1667911382298 Marconi.jpg

7.2.3 Experimental results

To demonstrate the capability of GFP-GAN to preserve the identity of individuals, we applied the GFP-GAN model
to the face images of celebrities in the Labeled Faces in the Wild (LFW) dataset.'! LFW is one of the most used
resources for face verification and recognition tasks. For each face (original, restored) we extracted the ArcFace
embeddings'®*? and computed the Cosine similarity between them. Figure 80 shows the resulting distribution.
Most of the scores are in the range of 0.85 to 0.95, meaning that there is a very strong correspondence between
each of the pairs of faces. For none of them the score is below 0.5, the threshold for which two faces are normally
considered to represent the same individual.’3

131 https://scikit-learn.org/0.19/datasets/labeled faces.html (last accessed June 06th, 2025)

132 ) Deng, J. Guo, N. Xue and S. Zafeiriou, "ArcFace: Additive Angular Margin Loss for Deep Face Recognition," 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 4685-4694, doi:
10.1109/CVPR.2019.00482.

133 https://arxiv.org/abs/1801.07698 (last accessed June 06th, 2025)
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Figure 80: Distribution of the Cosine similarity between pairs of faces (original, restored) for the individuals from the LFW dataset.

7.2.4 Deployment and integration in the XReco platform

This component is built using docker-compose and provides the following services:

e api_app: this container runs the FastAPI backend, which acts as a middleware between the user’s requests
and the face restoration process.

e celery worker: it is the schedule for the jobs called by the API. This is the main backend component that
runs the face restoration processes as asynchronous tasks.

e redis: message broker and database for the queue and jobs. It manages the communication between the
APl and the Celery task executor.

The process workflow works as follows:

1. Upload a set of images to process to the server, by calling the /upload APl endpoint.

2. Request to process an uploaded set of images, by calling the /restore APl endpoint. The user may specify
the desired upscale factor (x2, x4 or x8).

3. Poll the API to check the status of a processing task, by calling the /tasks/{task_id} APl endpoint.

4. Download the restored images, by calling the /download/{id} APl endpoint.

5. Download a preview image of the restored images by calling the /preview/{id} APl endpoint.

7.3 Human-centred point cloud super-resolution

In D4.1 (Section 5.3.11), we have addressed the problem of single-view 3D super-resolution (3D SR), specifically
in the context of enhancing sparse or low-resolution 3D geometry (such as depth maps or partial point clouds)
captured from a single viewpoint. We have already introduced the concept of 3D SR as an extension of 2D super-
resolution, emphasizing the analogous challenges in 3D data acquisition and representation. In particular, we
focused on point cloud upsampling as a concrete instance of 3D SR and described our early approach, which
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involved converting single-view point clouds into Projected Normalized Coordinate Code (PNCC)3*

representations and applying 2D super-resolution techniques such as SwinlR.

In the current phase, we generalize and consolidate that approach into a more flexible framework for single-view
3D SR. Rather than relying on a specific 2DSR model or representation, we propose a method that converts the
input 3D geometry into structured 2D image-like representations suitable for processing with efficient and well-
established 2D architectures. This avoids the need for high-resolution RGB inputs or computationally intensive
3D operations.

Within this framework, we continue to use PNCC as a structured 2D encoding of 3D coordinates, enabling
convolutional models to effectively learn geometric upsampling. We implemented and evaluated two model
variants under this framework: one based on Swin Transformers'*® (SwinT-PNCC) to prioritize reconstruction
quality, and another using Vision Mamba®*® (VM-PNCC) to emphasize computational efficiency. Both models
operate exclusively on PNCC inputs and are capable of real-time inference.

We validated our framework on standard depth SR benchmarks, achieving strong performance across different
upsampling scales. Importantly, our models achieve competitive results without the need for RGB guidance and
while maintaining efficiency suitable for real-time applications.

7.3.1 Methodology

The proposed framework operates within a 3D-to-2D representation domain, converting input data into PNCC
before applying 2DSR models. An overview of our pipeline is presented in Figure 81. The representation method
must satisfy several key requirements:

e Geometric independence: The representation must encode purely geometric information, functioning
independently of auxiliary inputs such as RGB data to ensure broad applicability across diverse scenarios.

e Reversibility: The method should maintain reversibility at the single-view level, meaning that given a 3D
structure and its projection, the representation preserves all information within the inherent limitations of
the projection itself. This property enables lossless recovery of the original projected form (depth map or
point cloud) and facilitates conversion to any desired single-view 3D format.

e Spatial compatibility: The representation must retain a matrix-structured, image-like format that preserves
spatial relationships, ensuring compatibility with standard 2DSR architectures without requiring specialised
modifications.

o Model flexibility: The super-resolution component can utilise any method that operates exclusively on low-
resolution input representations, without dependence on external guidance or auxiliary features. This

1347hu, X., Liu, X., Lei, Z., & Li, S. Z. (2017). Face alignment in full pose range: A 3d total solution. IEEE transactions on pattern
analysis and machine intelligence, 41(1), 78-92.
135 Lju, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 10012-10022).
136 Lju, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., ... & Liu, Y. (2024). Vmamba: Visual state space model. Advances in
neural information processing systems, 37, 103031-103063.
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design choice maximises the framework’s adaptability across different super-resolution approaches while
maintaining computational efficiency.

HR 3D in 2D Representation HR 3D in chosen format

Input:

2D Representation
Scene Geometry P

of 3D data 2D Super-Resolution ]

Depth map

. >»SR
Example Interchangeable
Camera intrinsics i Bckbons, &.6-BWHIR

Figure 81: Overview of the pipeline with an example PNCC representation.

Example: High Any 3D format
Resolution PNCC accepted

Choosing the right 3D representation is crucial for the framework. While depth maps are valid due to their image-
like format, they lack spatial richness. Point clouds, on the other hand, require projection and are incompatible
with 2DSR models. PNCC encodes normalized 3D coordinates as RGB values at each pixel. This preserves full
geometric information per view and remains compatible with standard 2D architectures. PNCCis also reversible;
depth maps can be recovered analytically by projection techniques (as PNCC pixels refer to points in the XYZ
space), and point clouds are extracted by listing valid PNCC pixels as points. The hypothesis is that it will be a
powerful format within the proposed framework. PNCC projection is presented in Figure 82. Each 3D point
projected from the scene is assigned its (X, Y, Z) position value as RGB value of the image.

Original view of the 3D scene PNCC

Figure 82: lllustration PNCC projection procedure.

Given depth and camera intrinsics, PNCC is computed as:

(u—cx)-dlu,v) (v—cy) - -du v) du v)
fx ) ’ fy °S ’ S )

PNCC(u, v) = <

where (fy, fx, ¢x, cy) are intrinsic parameters, d(u, v) is depth, and s is a scale factor. The resulting coordinates
are shifted and globally normalized to preserve the aspect ratio and fit within the RGB range. Pixels without valid
depth are masked during training. These are excluded from loss computation and optionally filled using nearest-
neighbour interpolation for stability. They are also excluded from any evaluation.
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The projection and backprojection processes are resolution-dependent, meaning the camera intrinsics must be
adjusted according to the resolution at which these operations occur. If the original intrinsic parameters
correspond to the native (high) resolution, they need to be scaled when applied to lower-resolution data. For
instance, if a low-resolution (LR) depth map is obtained via bicubic downsampling from a raw high-resolution
image, the intrinsics should be proportionally downscaled when converting the LR depth to LR PNCC. Then, after
super-resolution is applied, the original (unscaled) intrinsics are used for reconstruction.

7.3.2 2D Super-Resolution

Model architectures. The SwinlIR architecture is adapted to serve as the high-accuracy baseline. Since the PNCC
representation maintains an image-like structure, the model can operate without architectural changes to the
core pipeline. This adapted version is referred to as SwinT-PNCC.

For time-sensitive scenarios, DVMSR¥, a recent Vision Mamba-based super-resolution model designed for
efficiency, is adapted. Unlike the transformer-based SwinIR!*, the Mamba architecture offers significantly lower
computational cost while maintaining competitive performance. In this setup, the teacher version of DVMSR is
used without applying distillation. This variant is referred to as VM-PNCC.

In both cases, the architectures share a similar construction, comprising a shallow feature extractor (a CNN in
both cases), a deep feature extractor composed of a Swin Transformer block and a Vision Mamba block,
respectively, and an upsampler that combines these feature sets to generate an output. Two distinct output
layers in the upsampler are explored for two different approaches: the first is a 3-channel output for predicting
directly the PNCC, while the second is a single-channel output focused solely on the Z component (depth), after
which the entire PNCC is calculated using projection techniques. An ablation study contrasts both methodologies
within the VM-PNCC architecture.

Training procedure. The super-resolution models are trained directly from scratch in PNCC rather than
transferring patterns learned from unrelated domains such as RGB. Training is supervised by only the valid high-
resolution pixels, and the pixel-wise Charbonnier loss'* is employed. While other loss functions such as L1 and
L2 were considered, the Charbonnier loss yielded more stable and robust results in this setting. Further details

on training configuration are provided separately.

137 Lei, X., Zhang, W., & Cao, W. (2024). Dvmsr: Distillated vision mamba for efficient super-resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6536-6546).
138 |jang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R. (2021). Swinir: Image restoration using swin transformer.
In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1833-1844).
139 Barron, J. T. (2017). A general and adaptive robust loss function. 2019 IEEE. In CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (Vol. 10).
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7.3.3 Results

We evaluate our 2D-to-3D-SR framework using two representative datasets: NYUv2'%° and RGB-D-D*!. NYUV2 is
used to assess the accuracy and efficiency of our implementations under controlled conditions. RGB-D-D, being
a human-centred, real-world dataset, is employed to test generalization and applicability in realistic scenarios,
particularly those involving human subjects.

For NYUv2, we use a custom variant with proper intrinsics and scene-based splits to prevent leakage. Low-
resolution inputs are generated by bicubic downsampling, and all models are trained on this set. The results
(Table 19, Table 20) show that both SwinT-PNCC and VM-PNCC achieve competitive accuracy and significantly
lower inference times compared to the guided baseline SGNet.

Table 19: Results of Depth SR in NYUv2 dataset at several upscaling factors. Best results are bold and second best underlined (excluding
bicubic baseline). All methods are trained on NYUv2.

x4 x8 x16 x4 x8 x16 x4 x8 x16
25.22 34.80 47.19 0.002  0.002 0.002 0 0 0
11.66 21.26 35.85 0.596  0.438 0.436 36.4M 399M  86.6M
9.99 19.15 39.04 0.164 0.121 0.055 11.7M 11.8M  11.8M
11.19 20.15 39.48 0.045 0.027 0.024 7.2M 7.3M 7.3M

In RGB-D-D, the focus shifts to real-world performance. Despite the domain gap introduced by sensor variations
and scene content, our models outperform SGNet and bicubic baselines in accuracy, runtime, and model size.

Table 20: Results of Depth SR on RGB-D-D at 4x upscaling. Best results are bold (excluding bicubic baseline). Methods are trained on
NYUV2 to test model generalisation to other domains.

0.222 0.002 0
0.232 0.381 36.4M
0.212 0.109 11.7M

To further evaluate perceptual realism, we visualize point clouds reconstructed from predicted depth maps on
RGB-D-D. The visualisations clearly show the benefits of our unguided method in human-centric scenes. SwinT-
PNCC produces the most coherent surfaces, avoiding the noise artifacts present in SGNet and the deformation
observed with bicubic upscaling. Figure 83 showcases the visualisation of 2 different views of the prediction of
each approach (Bicubic upscaling, SGNet, and our SwinT-PNCC model).

140 sjlberman, Nathan, et al. "Indoor segmentation and support inference from rgbd images." Computer Vision—ECCV 2012:
12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12. Springer Berlin
Heidelberg, 2012.

141 He, Lingzhi, et al. "Towards fast and accurate real-world depth super-resolution: Benchmark dataset and baseline."
Proceedings of the ieee/cvf conference on computer vision and pattern recognition. 2021.
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Figure 83: Qualitative results of x4 upscaling Depth SR in RGB-D-D, while trained on NYUv2.

The presented Depth-SR method has been deployed as a service via an API for upscaling 3D data with depth and
camera parameters input. Future extensions of this work include expanding the current single-view 3D SR
framework to multi-view settings, enabling its application as a point cloud upsampling solution that aggregates
multiple surface observations. This would allow the framework to operate beyond single-view constraints while
preserving its lightweight, image-based nature. We also plan to explore additional 3D data enhancement tasks
within the same end-to-end framework, applying similar strategies to address challenges such as denoising,
completion, or compression in structured 3D representations. Finally, we aim to improve the internal SR models
by developing custom architectural modifications tailored to the properties of PNCC inputs and 3D geometry,
potentially boosting both performance and robustness across diverse scenarios.

7.4 Human-centred point cloud data enhancement

A common challenge when synthesising virtual
views from real 3D captures is the occurrence
of self-occlusions, i.e. regions of a surface that
are never visible from any input viewpoint and
therefore appear as missing or undefined in the
generated views. These occluded areas result in
holes or gaps in the depth or geometry data,
leading to incomplete or degraded virtual
reconstructions. This phenomenon is illustrated
in Figure 84.

Self-occlusion presents a depth completion
challenge requiring inference of plausible
geometry for missing regions. However, like
depth super-resolution, most existing methods depend heavily on high-quality RGB images to extract visual cues
for depth enhancement, limiting applicability when RGB input is unavailable. We address this through a
comprehensive 3D data enhancement perspective, treating geometric imperfections — sparsity, resolution
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Figure 84: Self-occlusion problem illustration.
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degradation, and self-occlusions — as components of a unified restoration task. This enables end-to-end models
capable of simultaneous multi-form enhancement. To our knowledge, no existing approaches target
comprehensive, unguided 3D data enhancement without RGB input. We developed 3DPVM, a unified, unguided
3D data enhancement model performing both super-resolution and self-occlusion-aware depth completion end-
to-end. The model operates directly on projected data without RGB guidance, optimised for practical runtime
performance while recovering fine details and filling occluded regions in single-view representations.

Our approach contrasts with traditional depth completion methods, which predict dense depth maps from
sparse inputs (LIDAR, stereo sensors). Guided methods leverage RGB structural and semantic cues through
spatial affinity propagation (DySPN%?, NLSPN*3), U-Net architectures'**, or dynamic fusion mechanisms'#®. Non-
guided methods operate without RGB supervision, relying solely on sparse depth cues through classical
approaches (sparse-to-dense) or diffusion processes!*. Advanced techniques include RGB-D inpainting'*” 8 and

multi-view completion4 %0,

Critically, no existing approaches perform depth completion and super-resolution simultaneously in a unified
framework. Current solutions employ sequential pipelines — either completion followed by super-resolution, or
vice versa. These methods suffer from error propagation and suboptimal integration, as each stage operates
independently without awareness of the full geometric degradation context. The prevalence of RGB-dependent
approaches in both domains further validates our unified, RGB-free solution for applications with limited input
information or real-time constraints.

7.4.1 Methodology

Building on the foundation of our prior 3D super-resolution work (Section 7.3), we develop 3DPVM, an unguided
3D data enhancement model capable of performing both super-resolution and depth completion
simultaneously. The architecture is inspired by DVMSR¥, which leverages Vision Mamba for efficient upscaling.

142 1in, Yuankai, et al. "Dyspn: Learning dynamic affinity for image-guided depth completion." IEEE Transactions on Circuits
and Systems for Video Technology 34.6 (2023): 4596-4609.
143 park, Jinsun, et al. "Non-local spatial propagation network for depth completion." Computer Vision—ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XllI 16. Springer International Publishing, 2020.
144 Zhang, Youmin, et al. "Completionformer: Depth completion with convolutions and vision transformers." Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
145 Wang, Yufei, et al. "Improving depth completion via depth feature upsampling." Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2024.
146 o, Kyle Shih-Huang, Jérg Peters, and Eric Spellman. "RoofDiffusion: Constructing Roofs from Severely Corrupted Point
Data via Diffusion." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024.
147 Lei, Jiabao, Jiapeng Tang, and Kui Jia. "Generative scene synthesis via incremental view inpainting using rgbd diffusion
models." CoRR (2022).
148 Dash, Ankan, Guiling Wang, and Tao Han. "Attentive Partial Convolution for RGBD Image Inpainting." Companion
Proceedings of the ACM Web Conference 2024. 2024.
149 Chen, Hao-Xiang, et al. "Circle: Convolutional implicit reconstruction and completion for large-scale indoor scene."
European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022.
150 Chen, Honghua, Chen Change Loy, and Xingang Pan. "Mvip-nerf: Multi-view 3d inpainting on nerf scenes via diffusion
prior." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
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We introduce several modifications to adapt the framework for dual-purpose enhancement and robust
operation without RGB input or prior knowledge of occluded regions. Unlike previous 3DSR implementations
using nearest-neighbour interpolation for invalid pixels, 3DPVM incorporates partial convolutions®® to
distinguish and process valid versus missing regions. Our architecture comprises three stages: a shallow feature
extractor, a deep feature extractor with Vision Mamba blocks, and an upsampler. Since the upsampler requires
fully valid inputs, we ensure validity in deep features despite initial missing data.

The Partial Mamba module adapts Vision Mamba for partial inputs by using partial convolutions for embedding
computation, assigning mean values to invalid pixels, and filtering fully invalid patches. Mean embeddings
substitute patches without valid data, producing fully valid outputs. Residual connections retain the initial valid
mask throughout the deep extractor to prevent unintentional updates.

The shallow feature extractor uses a single partial convolutional layer, potentially producing invalid areas. A filling
module iteratively extends valid regains by updating newly recoverable invalid areas based on proximity to valid
data. Without access to target valid masks, we cannot predefine background regions — particularly relevant for
human models or structured foregrounds. Therefore, we add a mask prediction branch operating parallel to the
enhancement pathway, mirroring the main architecture with its own filling module and upsampler to predict
probability maps. Thresholding determines the final foreground mask. The architecture of our method is
presented in Figure 85.

) Depth )
Upscaling

DFE
(Partial Mamba)

-1

Mask

Upscaling _)

Figure 85: 3DPVM architecture.

The training objective combines multiple loss terms to support both enhancement accuracy and robust mask
prediction: (1) A pixel-wise Charbonnier loss for the enhancement branch, encouraging accurate recovery of
depth values. (2) A frequency-domain patch loss to suppress high-frequency noise and improve geometric
regularity. (3) A binary cross-entropy (BCE) loss for the predicted mask to encourage accurate
foreground/background separation. (4) A mask contour regularization term, based on patch-wise contour length,
to ensure smooth and coherent mask boundaries. Concretely our loss term is:

1 ju, G., Reda, F. A., Shih, K.J., Wang, T. C., Tao, A., & Catanzaro, B. (2018). Image inpainting for irregular holes using partial
convolutions. In Proceedings of the European conference on computer vision (ECCV) (pp. 85-100).
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L(y' Y) = Ldepth(ydepth: ydepth) + Lmask(f’mask: ymask)
where
Ldepth(ydepth; Ydepth)

= Liharbonnier (Ydepthr ydepth)
+ Lfreq (Ydepth; :Vdepth) Lcharbonnier (Ydepth’ Ydepth)

_ 5 — (s 2 2
- Lcharbonnier()’depth: ydepth) - (Ydepth - ydepth) + €

and the individual loss terms are:

Lfreq(ydepthv ydepth) = DFTpatch()A'depth) - DFTpatch(ydepth)

Linask Tmaskr Ymask) = Lece Tmaskr Ymask) t Leontour Tmaskr Ymask)

LBCE(}A’mask: ymask) = (_(ymask : log(ymask)) + (1 - Ymask) : log(l - ymask))

1 Npatches
Leontour Tmaskr Ymask) = N : Z Z Vo —1) — Z Vo(y — 1)
patches patch i, jepatch i, jepatch

This combined objective allows 3DPVM to learn structured, high-quality outputs that address both missing
geometry due to occlusions and low-resolution detail in a unified, unguided pipeline. Following the same
procedure as in DVMSR, the model is trained by small crops to allow using larger batches (due to GPU memory
limitations).

Reprojection Data Augmentation.

To enable learning of depth

completion under self-occlusion

scenarios, we implement a Y v/’
reprojection-based data ‘
augmentation strategy that ,
introduces  occlusions in a = .

controlled, geometry-aware fashion.

The goal is to simulate realistic
missing regions that arise during
virtual view synthesis, allowing the
model to recover such areas using

Figure 86: Example of the proposed data augmentation.

only depth information, without reliance on RGB inputs. This pipeline assumes access to a 3D reconstruction
dataset containing multiple depth views per scene and corresponding camera parameters. For each training
sample, a target view is selected as the ground truth, and a neighbouring source view is chosen to generate the
occluded input. The selection process is based on a proximity distribution that ranks candidate views using
camera position distance and overlap in visible regions, ensuring both spatial closeness and scene relevance. The
depth map from the selected neighbouring view is then reprojected into the target view’s coordinate frame. This
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process naturally removes points from the target that are not visible from the source view, thereby creating a
version of the input with realistic self-occlusion patterns. This reprojected depth map becomes the model input,
and the original target view serves as the supervision signal. The resulting data augmentation on a sample depth
map is presented in Figure 86.

To support training for both depth completion and super-resolution, we further downsample the reprojected
depth to generate a low-quality (LQ) version of the occluded input. The resulting training pair consists of this
augmented LQ map and the original high-quality (HQ) target, providing supervision for both enhancement tasks
in a unified setup.

7.4.2 Experiments

We evaluated our proposed approach using the ActorsHQ dataset for both training and test (different sets,
isolated actors and sequences were used for testing). We chain our data augmentation technique to the bicubic
downscale degradation used previously in our 3DSR work to obtain the low-quality version of the samples, while
using the original one as high-quality pair (input and target respectively). We compared our method with a
bicubic upscaling and Nearest Neighbour interpolation (baseline) and a concatenation of Completionformer
without RGB and a DVMSR model (as the state-of-the-art approach). Both models are trained from scratch to
ensure they learn in the ActorsHQ domain for a fair comparison with our approach, including the proposed data
augmentation pipeline for Completionformer. Completionformer is already forced to be RGB-blind during
training, to ensure that it focuses solely on geometrical cues. DVMSR is trained with the high-resolution-low
resolution ActorsHQ train, without self-occlusions.

We make two types of evaluation: first, we use the target foreground mask (ignoring our mask prediction branch)
to demonstrate that we are already superior in the data enhancement part. Second, we also demonstrate the
results by using our predicted mask, while for the other approaches, which don’t predict this mask, the whole
image is evaluated.

Results (Table 21) using the target mask showcase the superior 3D data enhancement of our proposed 3DPVM
approach in terms of accuracy and model weight. In time, we expected to outperform the state-of-the-art
approaches by more, but we consider that this result is very variable because of the iterative nature of our filling
module, which depends on the amount of missing information to recover:

Table 21: Results of depth enhancement on ActorsHQ. Best results are bold (excluding bicubic baseline). All methods are trained on
ActorsHQ training-set.

11.07 0.021 0

16.40 0.178 85.2M
9.90 0.346 11.7M
8.94 0.172 7.6M

We also include qualitative results to demonstrate the better performance of our approach. In Figure 87 views
of the different resulting point clouds are shown. Using the target mask (a), 3DPVM already predicts a more

121

XReco is an HorizonEurope Innovation Project co-financed by the EC under Grant Agreement ID: 101070250.
The content of this document is © the author(s). For further information, visit xreco.eu.




XReco Project — Grant ID 101070250 D4.2 // XR & Media Transformation Services v2

plausible 3D shape. These differences are still more notable when using the predicted mask (b), as our model is
the only one that does this task at the same time. In the qualitative results the reason of applying this mask
prediction is clear, as otherwise when not disposing of the target mask the shown effect would be seen.

fb\ b | ‘ .

niR PVM !
(a) with target mask (b) without target mask

Figure 87: Qualitative results of 3D data enhancement (SR+gap filling) with applying the target mask (a), and without (b).

Although our results look promising (and already unique in the literature) we expect them to improve in the near
future. First, a better handling of the complete image context may be crucial for the quality of the results,
especially for the mask prediction. We also expect to better exploit the power of the Partial Mamba by using
alternative scans and partial modes (i.e. other kinds of padding than mean for the invalid data). The model can
also easily achieve better inference times by replacing the iterative layers by something more deterministic, while
probably also enhancing the output quality. Furthermore, we expect this to combine with other kinds of
degradation such as sensor noise or data compression artifacts, to demonstrate that the model may be able to
overcome these problems when trained with proper data. Finally, this makes even more sense to use in a multi-
view setting, as the completion ability of 3DPVM may allow for filling occluded regions when using virtual views,
generating complete Point Clouds.

7.5 3D Generation

3D Generation has been introduced to XReco as a very valuable service within the ecosystem. Apart from being
able to create content when the data are available, there is a high demand in creating content from prompting,
or from a very small amount of data. To this end, XReco explored and implemented text-to-3D technology
powered by LLMs. The goal is to convert textual descriptions into detailed 3D models, which can be used in
various applications such as virtual reality, gaming, and digital content creation. Four models were tested:

e Shap-E'* a state-of-the-art model designed for generating 3D shapes from textual descriptions. It uses
a combination of neural networks and probabilistic models to produce high-quality 3D geometries.
Known for its high accuracy and ability to generate complex structures, Shap-E also supports fine-tuning
to adapt to specific domains or improve performance on specialized tasks.

152 Jun, H., & Nichol, A. (2023). Shap-e: Generating conditional 3d implicit functions. arXiv preprint arXiv:2305.02463.
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e LLama Mesh®> focuses on creating mesh representations of 3D objects from text, leveraging the power
of LLMs to understand and interpret textual input, then generating detailed 3D meshes. LLama Mesh is
praised for its precision and the high level of detail in its outputs, making it suitable for applications that
require detailed and accurate 3D models.

e ThreeStudio® is a versatile 3D model generation tool that combines text-to-3D capabilities with a user-
friendly interface. It uses LLMs to interpret textual descriptions and generate corresponding 3D models.
Designed to be accessible to users with varying levels of expertise, ThreeStudio provides tools for both
automatic generation and manual refinement of models

e Huyuan3D-1%° utilizes advanced machine learning techniques to generate 3D models from text, focusing
on generating realistic and high-fidelity 3D objects. Ideal for use in professional settings where quality is
paramount, Huyuan3D-1 is known for its robustness and ability to handle a wide range of textual inputs.

Each model was evaluated based on its performance, accuracy, and ease of use.

Text-to-3D technology has a wide range of applications across different industries. In virtual reality and
augmented reality (VR/AR), it can create immersive environments and objects, enhancing user experience by
providing rich, interactive 3D content generated from simple textual inputs. In gaming, game developers can use
this technology to generate game assets, characters, and environments quickly and efficiently, reducing
development time and costs and allowing for rapid prototyping and iteration.

For digital content creation, content creators can generate 3D models for animations, videos, and other digital
media, simplifying the content creation process and making it accessible to individuals without extensive 3D
modelling expertise. Educational institutions and training programs can use text-to-3D models to create
interactive learning materials and simulations, enhancing engagement and understanding through visual and
interactive content. In e-commerce, online retailers can create 3D representations of products from descriptions,
improving customer experience by providing detailed and interactive product views, potentially increasing sales.

Architects and designers can quickly generate 3D models of buildings, interiors, and objects from textual
descriptions, facilitating rapid visualization and iteration of design concepts. Overall, text-to-3D technology offers
significant benefits, including enhanced user experience, reduced development time and costs, simplified
content creation, improved customer engagement, and accelerated design processes.

7.5.1 Detailed Comparison

In terms of accuracy and quality (Figure 88), Shap-E excels with high accuracy and the ability to generate complex
and detailed structures. LLama Mesh offers very precise outputs with high detail, excelling in creating detailed
mesh representations. ThreeStudio provides good accuracy with a balance between automatic generation and
user control for refinement, while Huyuan3D-1 delivers excellent quality and realism, making it ideal for
professional applications requiring high fidelity.

153 Wang, Z., Lorraine, J., Wang, Y., Su, H., Zhu, J., Fidler, S., & Zeng, X. (2024). Llama-mesh: Unifying 3d mesh generation
with language models. arXiv preprint arXiv:2411.09595.
154 https://github.com/threestudio-project/threestudio/tree/main
155 https://3d-models.hunyuan.tencent.com/
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Performance-wise, Shap-E is efficient in generating models but may require fine-tuning for optimal performance.
LLama Mesh offers high performance with quick generation times, suitable for real-time applications.
ThreeStudio provides balanced performance, offering both automatic and manual options for users. Huyuan3D-
1 exhibits robust performance, capable of handling complex and diverse inputs efficiently.

Regarding ease of use, Shap-E requires some expertise for fine-tuning and optimal use, whereas LLama Mesh is
user-friendly with straightforward generation processes. ThreeStudio is highly accessible with tools for both
beginners and advanced users, while Huyuan3D-1 is designed for professional use and may have a steeper
learning curve.

LLama-Mesh Hunyuan3D-1

A sword Aradio A church A radio

Shap-E (OpenAl) ThreeStudio

Acar A radio A roof Aburger

Figure 88: Comparison of the different text-to-3D models using the same prompts.

Shap-E is best for research and specialized applications requiring high accuracy. LLama Mesh is ideal for
applications needing detailed meshes, such as gaming and simulations. ThreeStudio is suitable for a wide range
of users, from hobbyists to professionals. Huyuan3D-1 is perfect for professional and high-fidelity applications,
such as virtual reality and digital content creation.

Each of the four models tested in the XReco project has its own strengths and is suited to different applications.
Shap-E and Huyuan3D-1 excel in generating high-quality, detailed models, while LLama Mesh offers precision
and quick generation times. ThreeStudio provides a versatile and user-friendly approach, making it accessible to
a broader range of users. The choice of model will depend on the specific requirements of the application and
the level of detail and accuracy needed.

By implementing text-to-3D technology, the XReco project aims to revolutionize the way 3D content is created,
making it faster, more accessible, and more efficient across various industries. As evidenced by the qualitative
results in Figure 88, the Hunyuan3D-1 algorithm is integrated as text-to-3D service in XReco (Section 9.3).
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8 Network acceleration infrastructure

This section presents the network acceleration technologies implemented to support XReco’s computationally
intensive media processing workflows. The infrastructure developments assess the critical performance
requirements of GPU-driven NeRF rendering, 3D reconstruction, and large-scale media file processing through
advanced memory management and unified computing frameworks.

8.1 Direct memory management

As described in D4.1, XReco’s architecture is structured around a three-tier development model that
encompasses the user experience, backend data management, and the deployment of systems on infrastructure.
A core focus lies in infrastructure development, where network acceleration becomes essential due to the heavy
demands of image- and video-based data flows. As XReco leverages cloud computing and GPU-driven NeRF and
3D reconstruction routines, the seamless transfer and processing of large, high-resolution media files require
low-latency communication and efficient bandwidth usage. Kubernetes (K8s)'*® is employed to orchestrate Al
workloads across compute clusters, particularly for large-scale models that exceed the capabilities of a single
node. To mitigate latency in shared memory operations between nodes, remote direct memory access (RDMA)
is utilized, enabling faster interconnects. Furthermore, XReco integrates the Unified Computing Framework (UCF)
to streamline the development of Al-driven pipelines through tools like the graph composer, microservice
builder, and application builder. This modular and scalable approach allows the decoupling of service,
application, and infrastructure layers. A headless service deployment method ensures efficient RDMA
connections within K8s environments, facilitating robust memory sharing. A prototype cluster equipped with
GPUs and Network Interface Cards (NICs) is currently being deployed at CERTH, laying the foundation for scalable
and efficient infrastructure tailored to XReco's media-intensive applications.

The architecture of RDMA as key enabling technology for UCF and

the utilization of K8s was introduced in D4.1. In this document, we

will first describe the results obtained on the implementation of n n

RDMA, and then the development of a UCS/UCF demonstrator (a 1 1 ) )

collaboration between NVIDIA and CERTH). Figure 89 shows the
A . . L Unified Memory

generalisation of the direct memory access for distributed

processing, as presented in D4.1. The final goal is that the different

processing elements can seamlessly share data over memory, i e 89: Generalisation of the direct memory

skipping CPU processing time of the network elements. On top of access approach for distributed processing.

this enabling technology, compartmentalised deployment of
workloads as well as Al-pipelines can be built at low latency.

CPU CPU

Figure 90 shows the high-level system utilised to benchmark the implementation within XReco of the shared
memory approach; the setup leverages GPU Direct RDMA to enable high-speed, low-latency communication
between NVIDIA GPUs and NICs, bypassing traditional data movement bottlenecks. Unlike conventional methods
that require data to be copied from GPU memory to system memory and mediated by the CPU, GPU Direct RDMA

156 https://kubernetes.io/
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allows direct peer-to-peer data transfer, eliminating intermediate memory copies and reducing CPU overhead.
This setup relies on specific CUDA’ APIs that expose GPU memory for the creation of memory keys (MKEYs),
which are essential for enabling RDMA operations. It also utilizes inter-driver callbacks between NIC and GPU
drivers through the dmabuf framework!®® to ensure seamless memory sharing and data movement. However,
GPU Direct RDMA is not compatible with systems that use Heterogeneous Memory Management (HMM) or
Unified Virtual Memory (UVM), as these rely on kernel-managed memory rather than CUDA-managed memory.
This architecture is particularly suited for scenarios requiring fast data exchange, such as Al model training or
inference distributed across GPU clusters, and in particular the rendering of NeRF calls as in XReco.

CPU CPU

System Memory System Memory

| |
. D [om] — [Bm] - D :

CONNECTX CONNECTX GPU

D S

Figure 90: Implemented system for results generation.

Figure 91 shows the improvement in peer-to-peer performance when using direct memory access. The results
show how bandwidth is only utilized at a fraction when utilizing the full stack, i.e., the data needs to follow the
entire memory path. However, when direct memory is utilized, we reach a utilisation of around 80%, which is
very positive considering there is always a network overhead. The network overhead includes the headers of the
different networking stacks and the encryption overhead. As a result, around 80% bandwidth for a 100Gbit/s
connection is achieved. Figure 91 (b) shows the latency reduction, amounting to circa 10% only of the latency
induced when no memory sharing is employed. Operating at decimal fraction of the latency improves the user
experience on rendering NERF models.

157 https://developer.nvidia.com/cuda-toolkit
158 https://docs.kernel.org/driver-api/dma-buf.html
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Figure 91: (a) Preliminary results of available bandwidth with memory sharing for GPUs and CPUs. (b) Latency reduction on shared
memory buffers.

A 10x reduction in memory I/O latency can significantly improve the performance of NeRF rendering, especially
in real-time or interactive applications. NeRF relies heavily on memory access, as rendering requires sampling
multiple points along each viewing ray, querying a neural network for colour and density values at those points,
and accumulating these results to produce the final image. Modern NeRF implementations, such as Instant-
NGP*°, make use of data structures like multi-resolution hash grids, which require frequent and often random
memory accesses. Lower latency directly accelerates these lookups, reducing delays in preparing input features
for neural network inference.

Furthermore, the small neural networks used in NeRFs still require repeated access to weights and intermediate
activations, which can become bottlenecks if memory latency is high. A 10x reduction in latency minimizes such
stalls, leading to more efficient execution of the model. Since each ray can involve hundreds of sampling points,
and each point triggers multiple memory operations, this latency improvement translates into a significant
increase in overall ray throughput. As a result, NeRF rendering becomes faster and more scalable, with observed
rendering speedups in the range of 2x to 5x depending on the hardware and model architecture.

In latency-sensitive use cases, such as real-time rendering for augmented or virtual reality, this improvement is
particularly impactful. It enables higher frame rates and reduces visual lag, enhancing the user experience.
Therefore, advances in memory technologies that reduce access latency, such as those leveraging 3D-stacked
memory, near-memory processing, or novel caching techniques, are well-aligned with the computational needs
of NeRF and similar volumetric rendering models. These results underscore the importance of low-latency
memory systems in supporting next-generation neural rendering workloads.

8.2  Unified Cloud Services Tools (UCS/UCF)

Unified Cloud Services Tools (UCS Tools, UCS), also known as the Unified Compute Framework (UCF), is a toolset
to develop cloud-native applications, and to streamline the development of Al-driven pipelines. It hosts
optimized microservices that can be independently deployed, managed, and scaled within an application. It can
be run in a distributed model, on multiple devices, across the cloud to edge and embedded platforms. Finally, it

159 Miiller, T., Evans, A., Schied, C., & Keller, A. (2022). Instant neural graphics primitives with a multiresolution hash
encoding. ACM transactions on graphics (TOG), 41(4), 1-15.
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allows domain experts to create their own microservices using UCS-compatible NVIDIA SDKs. Under the hood, a
Microservice Specification is created to define infrastructure requirements, APl endpoints, labels and other
configurations. The Specification is built into a UCS Microservice, based on top of a container image.
Furthermore, a single or multiple Microservices can be combined in an UCS Application.

This architecture decouples the different layers (service, application, and fabric), and enables individual
configuration management while maintaining interoperability, hence allowing for scalability with a simple load
and run execution in different environments. Additionally, utilising UCF pipelines continues to provide support
for RDMA memory sharing applications.

Microservice Registry is the collection of UCS Microservices used during the development and operation. The
total collection can come from both local repositories and/or cloud-hosted solutions like NGC (NVIDIA GPU
Cloud). To work with existing applications, or to create new ones, the framework is both available through GUI
interface, called UCS Studio, or command line interface (CLI) tools for Microservice and Application building.

8.2.1 Jetson Orin setup

A proof-of-concept setup was created to test the performance of UCF pipelines, consisting of two components.
The first component, the development system, is hosting UCS Tools, and is responsible for creating and
configuring the UCF pipelines. The Microservice and Application building CLI tools were installed, requiring
Ubuntu 22.04 + x86_64 platform, on a Windows-based workstation PC via WSL2. The second component,
responsible for deploying the UCS Microservices/Applications and hosting the Kubernetes cluster, a Jetson Orin
AGX Developer Kit 64GB was used. Figure 92 shows the installation and configuration steps to complete the
deployment system.

Jetson Orin Setup

For UCF deployment system

via SDKManager

|

Figure 92: Roadmap of setting cluster on Jetson Orin.

Using the Orin out of the box requires reflashing of the OS and installing essential libraries. After powering up
and booting in force recovery mode, the Orin and the installation host can be connected via USB, communicating
on serial connection. The installation has to be an Ubuntu running machine (Windows with WSL2 is not suitable).

To complete the installation, NVIDIA's SDKManager is recommended. It requires an NVIDIA Developer account,
which can be created for free. During the installation process, the right device type is to be selected to complete
installing Ubuntu 22.04. The SDKManager also completes the installation of the newest available JetPack SDK
version (6.2), and package consisting of kernel modules, drivers, necessary firmwares. The Jetson Orin has 64 GB
built-in storage, which can be extended with an SD cards and/or NVMe type SSD. Due to the installed software
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and used container image sizes, in this system a 250 GB NVMe SSD extension was added, and the Jetson Orin OS
flashed on it.

After completing the setup, and connecting to the network via wireless connection, the next installation was
NVIDIA's Cloud Native Stack (v13.2), a software collection to run cloud native workloads on NVIDIA GPUs. It
contains many libraries necessary to run cloud-native, GPU accelerated applications, such as Containerd, NVIDIA
Container Toolkit, Kubernetes (including Microk8s), Helm, NVIDIA GPU Operator, etc. Additionally, NVIDIA's k8s-
device-plugin is necessary to be installed to configure the Kubernetes cluster, enabling it to recognise the Jetson
Orin's GPU as allocatable resource, and to be requested and used by the Kubernetes Nodes/Pods.

8.3 Test setup

To test and compare the performance of the UCF pipeline compared to a traditional Kubernetes deployment, a
benchmark was created using PyTorch, a widely used python library in machine learning, while resource usage
metrics were collected with built in Kubernetes and OS (LAT Tegra) tools.

Testing was based on PyTorch container image available on NGC (NVIDIA GPU Cloud), using version 25.04-py3-
igpu. In the UCF case, UCS Microservice was configured based on the image, packaged into a UCS Application,
and deployed via helm install on the Jetson Orin's cluster. In the control case, a Kubernetes manifest file was
created for single run Pod job.

PyTorch’s functions were benchmarked. The test calculates the batched dot product of different sized matrices,
ranging from [1,1], [1, 64] to [10000,10000]. Two methods are used to achieve the batched dot products, one by
a combination of multiplying and summing (torch.mul/torch.sum), and another by built-in PyTorch function
(torch.bmm). These calculations were run on 1, 4, 16, and 32 process threads. Figure 93 shows the calculation
times of these matrices in microseconds:

Dot product calculation (1 thread) Dot product calculation (1 thread)

mKBS mulfsum = UCF mulfsum mKESBmm B UCF bmm
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Figure 93: Matrix dot product calculations on Kubernetes and UCF.
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The calculations reveal that from matrix sizes of
[1,1] to [10000, 1024], execution time is within
a few microseconds in the Kubernetes and UCF
cases, both scaling evenly with the size. At a
significant jump, at matrix size [10000,10000],
is where an approx. 2% increase in execution
time can be noted, both in mul/sum and bmm
cases, as can be seen in Figure 94. In every case,
the number of threads does not impact
performance, regardless of matrix size.

During the benchmarking test calculations, the
demand for a variety of resources was
monitored, such as CPU, memory and GPU

D4.2 // XR & Media Transformation Services v2

Dot product calculation on 10000x 10000 matrix

1 thread

KBS mulfsum  WKBS bmm  BUCF muljsum  BUCF bmm

4 threads 16 threads 32 threads

Figure 94: 10000 x 10000 size matrix dot product calculations on Kubernetes

and UCF.

utilization. The Kubernetes Node executing the UCS Application and the Kubernetes Pod jobs was measured via
"kubectl top node" command, showing CPU and memory usage (MEM) in ratio to total available of each resource.
For GPU, L4T Tegra OS included tool “tegrastats” was utilized, which queries the Jetson Orin device’s GPU usage.

Figure 95 shows the CPU, memory and GPU utilization, respectively, of the UCF and Kubernetes test cases:
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Figure 95: (a) CPU usage, (b) Memory usage, and (c) GPU usage on Kubernets and UCF.

The results show very similar resource usage, in either CPU, memory, or GPU. This indicates that utilizing the UCF
pipeline does not require extra resources compared to traditional Kubernetes deployments, meanwhile retaining
features like RDMA support, individual configuration management for scaling, and NGC integration.

9 Authoring tool development and service communication

The various assets that can be found or generated on XReco can be used in a wide variety of applications. XReco
provides three authoring tool experiences for compositing XR applications each requiring different sets of digital
skills, considering professional workflows as well as more intermediate ones.

9.1 Unity-based authoring

In D4.1 (Section 7.1), a very high-level overview of the state of the Unity-based authoring tool was presented.
Since then, many additional features have been implemented and applied on Unity to achieve flexibility and
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customisation tailored to the identified user-base targeting ease-of-use.'®® More specifically, we provide an easy
link to the Orchestrator Dashboard (Section 9.3), so that the user has fast access to the assets. These assets can
then easily (via Drag’'n’Drop) be added to the scene. We also made a couple of templates available, so that the
user does not need to start from scratch but can directly start with a solid base for the most common use cases.

9.1.1 Usage Overview

The user first needs to install Unity and then he can open the Authoring Tool (AT) project itself. In contrast to
the plain Unity Editor, the user does not start from scratch, they are welcomed with a dialog (Figure 96-a). From
this dialogue they can directly choose to first start with some interactive tutorials (Figure 96 — b, c). Additionally,
they can choose to start from a template scene (Figure 97). The template scenes contain not only some out-of-
the-box functionality, but are also documented and color-coded so that the user can use these as a starting point
to rapidly create applications for his own content

Conpincon: 0%

Using of the Scana Templates
Vw59 une The reject Tampatas >

Welcome to the XReco Authoring Tool

Close  OpenTutorials  Orchestrator Dashboard  Start With Template

(a)

(c)

Figure 96: Unity based authoring project start. (a) Introduction screen when opening Unity. (b) Available interactive tutorials. (c)
exemplary tutorial.

160 For an animated overview of all features, visit our tutorial https://www.youtube.com/watch?v=9m2LAkUIEEk
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Figure 97: (a) Exemplary template scene. (b) Unity-based template functionality.

The AT also adds a range of reusable Prefab Objects to the Unity
editor, which fit into many of the XReco use cases, easy to use
and fully documented. These prefabs can be used in any scene.

The toolbar (Figure 99) also adds more functionality and
connections to other packages, such as opening documentation
pages for the integrated services developed within XReco, or
backing up the current project.

Figure 98: Prefabs available in the Unity-based AT.
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Figure 99: Unity-based AT toolbar options.

The AT also adds some useful 3™ Party packages, like GLTF importer or 3D Gaussian Splatting Support. The 3DGS
package was also modified to support WebGPU builds.

9.1.2 Outcome

When the user is done with creating the application they can create a standalone app for different platforms,
like mobile devices (iOS and Android), an HTML5 web application or a desktop experience (Figure 100-a). The
output can then be shared or uploaded, so that other people can run the app without the need to install the
Authoring Tool themselves (Figure 100-b).
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Build Build And Run Scene For Web
. 3 B Name
Export Build Scene For Android
Help Build Scene For Desktop = D3D12
Partner Sites Build Scene For iOS B® MonoBleedingEdge

Collapse non-XReco Components Build Scene For MacOS MW XReco_Data
Performance Indicator

Prefabs Window

W XReco_Project_BurstDebuglnformation_DoNotShip

& UnityCrashHandler64.exe

B UnityPlayer.dll

(a) (b)

Figure 100: Unity-based AT outputs. (a) Building for different platforms. (b) Output executable (for Windows in this example).

9.2 XRCapsules

XRCapsules is a web-based open source-application for creating XR experiences. Its goal is to serve as an easy
way to generate Demonstrations, place assets in space, and program the execution of asset animations and
access to triggers in a very simple way, to finally package it and build experiences using native Unity applications.
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9.2.1 Motivation

Maintaining a complete XR development department that includes programmers, 3D artists, and ongoing
application support can be an expensive endeavour. The cost of skilled professionals to develop and maintain an
application can quickly add up, particularly when considering the need for regular updates and support.
Additionally, software costs and hardware required to support the development process can also be significant.

Outsourcing development work may seem like a cost-effective solution, but it can come with its own set of
challenges. Communication issues and cultural differences may arise, leading to delays and misunderstandings.
Additionally, it may not provide the level of control and oversight that a complete development department can
offer.

9.2.2 Templates and no-code

Using templates and no-code solutions can provide significant advantages over traditional development
methods. With templates, developers can save time and effort by starting with pre-built structures and designs
rather than building everything from scratch. This allows for a more streamlined development process, as well
as faster turnaround times for new projects.

No-code solutions can also be incredibly
beneficial, as they allow non-technical users to
create and implement their own solutions
without having to rely on specialized

NEW PROJECT

‘ My projoct name ‘

developers. This can be especially useful for - k

smaller businesses or organizations that may S o M’ ‘w
not have the resources to maintain their own { QUEST3AR | | INFOGRAPHICS | |,ﬂ‘t"“°°°°"°" ‘
development teams. With no-code solutions, ®

users can simply drag and drop elements to HORI - OLD DEPOT HDRI - BUIKSLOTERMEERPLEIN

create their own custom solutions, without
having to worry about coding or technical
details.

HDRI - ZWARTKOPS AFTERNOON

Overall, using templates and no-code
solutions can provide a more efficient and
cost-effective approach to development,
while also empowering non-technical users to
create their own solutions (Figure 101).

Figure 101: Overview of template creation in XRCapsules. The user can start
from a blank project, templates for smartphone AR, Virtual production etc. In
addition, the user can select a starting environment map illumination with
pre-defined HDR images.
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9.2.3 Flow and components

9.2.3.1 Assets

Assets are the building blocks of XRCapsules. They are the media elements that can be linked to templates to
facilitate the creation of solutions, specifically the main demos like Home TV, GPS Based Walking, and GPS Based
Car. There are various types of assets that can be used in the XRCapsules platform, which include:

3D Model.
3D Character: A three-dimensional character that can be animated and rendered in real-time.
360° Environment: A panoramic image that covers the entire 360° field of view.

HDR files: which are often used in lighting 3D scenes. These files contain a wider range of colour and
brightness information than standard image files, which allows for more realistic and dynamic lighting in a
3D environment.

In addition to these, there are also video assets which can be linked to XRCapsules:

Text: A textual element that can be used to display information.

Image: A static image that can be used to provide visual information.

Video: A video that can be played within the experience.

360° Video: A video that covers the entire 360° field of view.

Stream: A live video that is streamed from a server

FVV (Free Viewpoint Video): A video that allows the viewer to move the camera position freely.

NeRF (Neural Radiance Fields): A technique to represent 3D scenes as continuous functions, allowing for
novel views to be rendered with high quality.

Point cloud: A 3D point cloud that can be used to represent real-world objects.

9.2.3.2 Triggers

Triggers are used to interact or activate with assets in XRCapsules. There are two types of triggers:

User trigger: This type of trigger is any way of interacting with an asset by the user. This includes clicking
with a mouse or on a touch device, pressing a previously programmed key, or using sensors built into the
device, such as blinking, gyroscope, etc.

Time trigger: This type of trigger generates interaction from a specific time, which can be determined by
the start of execution (absolute time) or from a user trigger (relative). The spawn of an asset in the scene is
a time trigger.

Using triggers, assets can be animated and made interactive within XRCapsules, allowing for the creation of

immersive and engaging experiences without effort.
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9.2.3.3 Interface

We define this tool as a
Platform-as-a-Service (PaaS),
a web solution that connects
with different elements and
facilitates the creation or
editing of XReco elements in
an easy way.®!

We start with a webgl-based
interface, which we
developed using three.js,
always seeking universality of
execution on different
platforms (Figure 102).

Figure 102: An example scene, showcasing the XRCapsules interface on a web viewer.

In any case, our goal is not to

fully visualise all assets, but

rather their physical representation through a bounding box or associated proxy and perform simulation and
play in the associated XRCapsules Player application.

9.2.4 JSON interchange format

The exponential rise of 3D content creation across industries - ranging from architecture to virtual production -
has exposed the inefficiencies of traditional monolithic file formats like USD and FBX, which bundle geometry,
metadata, animations, and textures into a single structure. These formats, while powerful, introduce challenges
in terms of version control, scalability, and real-time rendering, particularly in web, mobile, and cloud
environments. JSON, when used as a reference format, solves these problems by externalizing heavy assets
(GLB/GLTF) and retaining only the logical scene description (transformations, hierarchies, triggers, metadata) in
a lightweight, readable structure. This separation of structure from content significantly reduces file size, allows
selective loading of assets, and enhances modularity - making it ideal for dynamic rendering workflows,
distributed production pipelines, and device-agnostic deployment.

Within the XRCapsules tool developed by Mediapro/Visyon as part of the XReco project, JSON enables non-
technical users to compose rich XR experiences through a no-code interface, outputting JSON descriptors that
orchestrate 3D scenes by referencing external assets. This descriptive format is cloud-native and optimized for
both authoring and playback. It supports versioning, delta updates, and distributed rendering architectures by
ensuring only the JSON layer (typically under 1MB) needs to be transmitted across networked environments,
while heavy assets (10-500MB) remain cached or streamed as needed. Compatibility with WebGL/WebGPU and
Unity ensures broad ecosystem integration, while we have implemented extensibility mechanisms (like
rendering hints -"prefer_gaussian_v2") to future-proof scenes against evolving rendering technologies.

Use cases already include BIM/IFC translation for AEC, level design in gaming, object libraries in museums, and
cloud-rendered XR demos in automotive or broadcast. For example, a museum viewer may browse thousands

161 For an animated overview of all features, visit our tutorial https://www.youtube.com/watch?v=qTzAUbOOSVM
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of digital artifacts with near-zero latency, loading only selected assets and their contextual metadata
dynamically. Meanwhile, virtual production environments benefit from JSON’s orchestration layer, which allows
sub-millisecond updates across multi-node rendering clusters. This architecture positions JSON not just as a
practical solution for asset interchange, but as a fundamental enabler of the next generation of spatial computing
- where content is streamed, remixed, and rendered contextually in real time across diverse platforms and
devices.

In Annex | — Section 11.3 provides a detailed overview of the JSON schema used for XRCapsules.

9.3 Orchestrating between user interfaces and services

In D4.1 the Orchestrator dashboard was presented showcasing the services integrated until December 2023. In
this document we describe the latest developments of XReco’s Ul designed to support the full pipeline of XR
content creation and reuse. Further developments of the Orchestrator dashboard are presented along with a
new main component, the XReco Marketplace. This section focuses on the Orchestrator Dashboard, which serves
as the central interface for interacting with the platform’s core services.

The Orchestrator enables users to upload, search, and organize assets such as images, videos, and 3D models. It
facilitates reconstruction and optimization workflows and supports publishing to the Marketplace. It also
provides direct access to tools like XRCapsules (Section 9.2), ZAUBAR CMS (Section 9.3.1), and the Unity-based
Authoring Tool (Section 9.1) for XR content creation.'®?

Key functionalities of the Orchestrator Dashboard include:

e Browsing and searching content: Search and browse external sources (e.g., Sketchfab, Wikimedia) or
internal assets in the Neural Media Repository (NMR). Uploads are enriched with Al-based tagging for
improved discoverability.

e Managing content baskets: Organise assets into user-defined baskets to manage projects and workflow
inputs. Baskets serve as the context for launching processing jobs.

e Launching reconstruction and asset optimization workflows: Configure and launch reconstruction and
optimization services directly from the dashboard.

e Publishing assets: Publish assets to the Marketplace with a built-in licensing wizard.

e Accessing additional tools: Seamlessly transition from asset management to XR content creation using
XReco’s connected authoring environments.

The high-level architecture of the Orchestrator Dashboard is illustrated in Figure 103.

162 For an animated overview of all features, visit our tutorial https://www.youtube.com/watch?v=IU-drRzLZj4
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The Orchestrator integrates
a wide range of services and
APls, acting as the central N samices
hub for asset ingestion,
processing, and publication
within the XReco
ecosystem. It connects with

services: ‘ I J
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3DGS) for 3D scene Figure 103: High-level architecture of the Orchestrator.

reconstruction.

Asset Optimisation Services (Video Upscaler, 3D Data Enhancement, Blind Face Restoration) for improving
the quality of images, video and 3D models.

Generative Al Service for text-to-3D model generation.

The Orchestrator also integrates with key horizontal components and APIs of the XReco platform:

The Neural Media Repository (NMR) for internal content storage, semantic enrichment, and advanced
search. The NMR is enriched by Al-powered descriptor extraction services that generate metadata such as
tags (from news tagging and object detection), visual similarity features, cross-modal descriptors (enabling
image-to-model search), and semantic video summaries. These metadata enhance the discoverability and
contextualization of assets within the Orchestrator interface.

The Metasearch Backend for federated search across external repositories such as Sketchfab, Wikimedia,
RAI, DW, and Europeana. It also powers the content baskets feature, allowing users to collect, organise, and
manage assets from both external and internal sources within the Orchestrator interface.

The Monetisation Management API for publishing assets to the Marketplace.

Keycloak for secure authentication and centralised user management across the platform.

Together, these integrations enable a seamless workflow from asset acquisition and processing to content
publishing and XR experience creation. The Minimum Viable Product (MVP) of the XReco Platform, including the
fully functional Orchestrator Dashboard, has been implemented. The following sections provide a detailed
walkthrough of the user experience.
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9.3.1 XReco Platform Overview

When users access the XReco platform, they are first
presented with the Login Page (Figure 104), where they enter
their email and password to sign in.

Upon login, users are directed to the Orchestrator

Dashboard. Before exploring its features, it is useful to
understand the main navigation bar (Figure 105) available on
all platform pages: Figure 104: XReco platform: Login page.

Asset Upload: A dedicated page for uploading new assets to the platform.

Orchestrator: Main dashboard page of the XReco platform.

Marketplace: A separate area for discovering XR content (covered in D3.2).

User Options: Account settings mainly related to the Marketplace, such as profile management and
purchased assets (covered in D3.2).

5. Service Jobs: Area for monitoring and managing ongoing/completed jobs.

Deco 1 2 3 4

P wnNPE

>

Asset Upload  Orchestrator Marketplace  Hello evs_mvp_test_1~

Figure 105: XReco Platform: Navigation bar.

The Orchestrator page is organized into several key sections: Repositories Selection, Content Basket
Management, XReco Services, XReco Authoring Tools, and the Asset Browser. These sections are highlighted in
Figure 106.
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Figure 106: Orchestrator: Main page overview.

9.3.2 Repositories Selection

(® External Repositories

(O My Repository

Figure 107: Orchestrator: Repositories selection

The Repositories Selection panel (shown in Figure 107) allows users to define the source from which they wish
to browse or search for multimedia assets. Two options are available:

e External Repositories: This option provides access to external multimedia platforms, made available
through integration with the Metasearch Backend.

e My Repository: This corresponds to the Neural Media Repository (NMR), which contains an
organisation’s internally managed multimedia content and is connected via the NMR Backend.
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9.3.3 Content Basket Management

(O xRcapsule_cContent_Basket (5) VA |
(O cuglielmo Marconi  (13) VA |
(O 3pGs_content_Basket (50) VN |
(O sfM_Content_Basket (72) VA |
(O NeRF-in-the-wild_Content_Basket (106) P |

+ CREATE

Figure 108: Orchestrator: Content basket management.

The Content Basket Management panel (shown in Figure 108) enables users to organise assets into curated
collections known as content baskets. These baskets serve as user-defined workspaces that support efficient
grouping, processing, and project organization.

Users can create a new basket by clicking the “+ CREATE” button, which opens a prompt to name the basket.
Existing baskets can be renamed or deleted as needed. One basket can be designated as the active workspace at
any given time.

Assets displayed in the Asset Browser - whether originating from search results or other baskets - can be added
to a basket through a simple selection workflow. By clicking the white selection circle at the corner of an asset
tile (1), a new “+ ADD” button (2) will become visible. Clicking this button opens a dropdown menu (3) to choose
the target basket. This interaction is illustrated in Figure 109.

Q catedral

O txternal Repositories View Results 24

@ MyRepository “catedral” SELECT AL
i ' 1
O XRCapsule_Content_Basket 3

O Gugiisimo Marconi

O 306s_Content_Basket

© stM_Content_gasket

O NeRF-in-the-wild_Content_Basket V|

Figure 109: Orchestrator: Add asset to basket.
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9.3.4 Asset Browser

The Asset Browser provides a dynamic and user-friendly interface for searching, previewing, and managing
multimedia assets within the XReco platform. The content displayed in the Asset Browser is determined by the
active selection in the Repositories panel or by the currently selected content basket.

Only one content source - either a repository (External or NMR) or a content basket - can be active at any given
time. When a repository is selected, the Asset Browser activates a search interface via a search bar located in
the top-right corner of the section. This search bar is disabled when a content basket is selected, in which case
the Asset Browser displays the assets already added to that basket.

Several features in the Asset Browser are always available, regardless of the selected source:

o Bulk asset selection: A “Select All” button allows users to select all assets displayed on the current page.
Individual asset selection is also possible by clicking the circle icon in the top-right corner of each asset tile,
as mentioned previously.

e Pagination and display options: Users can navigate through result pages and adjust the number of assets
shown per page, improving the usability of the interface when working with large datasets.

The following subsections provide a more detailed overview of how the search operates when working with
external repositories and with the Neural Media Repository.

9.3.4.1 Search External Assets (Metasearch)

When the “External Repositories” option is selected in the Repositories panel, users can perform searches across
integrated external platforms such as Sketchfab, Wikimedia Commons, RAI, Deutsche Welle, and Europeana. This
functionality is powered by the Metasearch APl and supports a wide variety of asset types, including images,
videos, 3D models, audio files, and textual resources.
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Figure 110: Orchestrator: Search from external repositories.
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As shown in Figure 110, users initiate a search by entering a query—e.g., “Eiffel Tower” —in the search bar. The

resulting assets are displayed in the Asset Browser, organised by relevance.

To refine search results, users can click the “Filters” button, which opens a panel with several filtering options

(illustrated in Figure 111). Available filters include:

Q, catedral de lisboa

e Category: Filter results by content type (e.g., image, m v
video, 3D model). e | [
e License Type: Limit results to assets with specific category ©- ticening 00—
usage rights (e.g., CCO, CC BY).
e Source Repository: Restrict results to a particular [ }
external provider (e.g., Sketchfab). ﬁ } % }
After selecting the desired filters, users must click the % ::v::: {
“Apply filters” button to execute the filtered search.
Repositories D=
Selecting an asset from the search results opens a detailed |
preview pop-up (examples shown in Figure 112). This e
interface not only displays the asset itself but also presents hwu }
the associated metadata. The layout of this preview adapts ey J

to the asset type. For example, a 3D model will include an
interactive viewer, while audio and video assets feature
playback controls.

Figure 111: Orchestrator: filters (external assets).

Asset Preview x Asset Preview

File:EiffolTower fixed.stl Filo:Fr-Tour Eiffel.oga

Asset Preview x Asset Preview

Figure 112: Orchestrator: Asset preview (external assets). (from top left to bottom right: 3D model, audio, text, image).
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Metadata shown in the preview includes essential information such as the asset’s title, description, type, source
repository, licensing terms, and user details. This contextual information allows users to assess whether an asset
is suitable for reuse or integration into their content workflows.

When external assets are added to a content basket, they are ingested into the Neural Media Repository (NMR).
Once ingested, these assets gain access to advanced tools such as Al tagging and visual similarity search. These
functionalities are described in the following section.

9.3.4.2 Search Organisation’s Assets (NMR)

Assets can be ingested into the Neural Media Repository (NMR) through two methods: either by selecting
external assets and adding them to a content basket, which triggers automatic ingestion, or by manually
uploading files via the Asset Upload page shown in Figure 113.

*Meco

FILE UPLOAD *
ASSETTYPE *

mET [E] vioeo ) 2000 B o
TITLE*

oS

DESCRIPTION

ASSET SOURCE LICENSE

[ 1om the rightful owner or possess the necessary rights to upload this asset

Figure 113: Asset upload page.

The Asset Upload page, accessible from the top navigation bar, provides a simple interface for uploading local
files to the platform. Users can either drag and drop files or browse their device to upload images, videos, 3D
models, or ZIP archives. ZIP files are suitable for complex or unsupported formats and must follow the NMR’s
required structure - details of which are available via an on-screen pop-up. A title is required for each upload,
while a description and license information are optional. Once submitted, assets are automatically processed
and become searchable within the NMR.

After uploading, users can return to the Orchestrator. By selecting “My Repository” in the Repositories panel,
they can search their organisation's assets using the NMR API. As shown in Figure 114, users can enter a query—
e.g., “Einstein Tower Dataset”—into the search bar to locate relevant files, which are then displayed in the Asset
Browser.
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Figure 114: Orchestrator: Search NMR assets.
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Selecting an asset opens a detailed preview pop-up. While similar to the asset preview examples shown before,
it includes additional NMR-specific capabilities such as:

o Al-generated tags for detected objects and extracted keywords, which are displayed as clickable filters to
explore related content.

e Visual similarity search, enabling discovery of visually similar images, video segments, and 3D models. This
includes cross-modal image-to-model retrieval for more effective asset discovery.

e An option to publish uploaded assets to the XReco Marketplace, described further in D3.2.

Figure 115 and Figure 116 illustrate an example of an image ingested into the NMR. Below the image, two tabs
are available: Description and Tags. Figure 115 shows the Description tab with asset details, while Figure 116
displays the Tags tab featuring Al-generated tags. In this example, “Detected Objects” such as “tie” and “person”
are identified on the image, alongside “News Tags” extracted from the description, such as “Guglielmo Marconi”.
Clicking any tag allows users to find other assets containing the same tag (e.g., selecting “person” retrieves assets
where persons were detected).
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Figure 115: Orchestrator: Description tab in asset preview.
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Figure 116: Orchestrator: Tags tab in asset preview.
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Additionally, both figures show the “Similar Images/Videos” and the “Similar 3D models” buttons at the bottom
right. The first initiates a search for visually similar images and videos, while the second finds 3D models visually
related to the selected asset. In Figure 117, we can see an example of a similarity search.
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Figure 117: Orchestrator: Results of a similarity search.
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9.3.5 XReco Services
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Figure 118: Orchestrator: XReco services.
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The XReco Services section (Figure 118) provides users with access to the available XReco services within the

Orchestrator Dashboard. Each service is represented by a tile that includes:

e An “Info” icon to view a brief description of the service.
e A “Settings” icon to configure service parameters.
e A “Play” icon to launch the service.

Hovering over the “Play” icon reveals the required input types for that
service (see Figure 118, top). For example, the Structure from Motion (SfM)
service accepts only image inputs. As such, the currently selected content
basket must contain at least one image to run the service. When the input
criteria are met, the “Play” icon turns green; otherwise, it remains greyed
out. If users attempt to launch a service without meeting the input
requirements, an error message will appear.

Advanced users can customize processing parameters via the service
configuration pop-up (Figure 119), or they can proceed with default settings.

Once a service is launched, users can track its progress in the Service Jobs
tab (Figure 120). This interface displays both ongoing and completed jobs,
along with relevant details such as the service name and associated content
basket.

sfM (Structure from Motion)

Parfor texturization step or produce naked mesh for
quicker geomatry check

Texturization

TRUE

Number of triangles

50000

Texture size

8

—

Figure 119: Orchestrator: Service
configuration pop-up.
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Figure 120: Orchestrator: Service jobs tab.

For ongoing jobs, users can view the progress percentage, status messages, or cancel the job. For completed
jobs, the following options are available:

Preview the result (typically a 3D model).

Download the output to their local device.

Upload the result to the NMR for further use or sharing.
Delete the result if no longer needed.

Services integrated on the Orchestrator include:

SfM (Structure from Motion) — Developed by UPM. Reconstructs textured 3D meshes from multiple images
by estimating camera poses and triangulating a point cloud. It accepts one or more images as input and
outputs a 3D model in GLTF or OBJ format.

NeRF (Neural Radiance Field) in the wild — Developed by CERTH. Learns a Neural Radiance Field from
unstructured images taken under varying lighting or occlusions. It accepts a set of images as input and
outputs trained NeRF model weights.

Instant-NGP (Neural Graphics Primitives) — Developed by CERTH. Rapidly trains and renders NeRFs using
NVIDIA's Instant-NGP for efficient 3D reconstruction. It accepts one or more images or a video as input and
outputs a PLY model.

GDNeRF — Developed by i2CAT. Performs real-time NeRF view synthesis from sparse inputs using a
volumetric renderer. It accepts a ZIP archive of images as input and outputs RGB and depth videos, along
with trained model weights.

3DGS — Developed by i2CAT. Uses 3D Gaussian Splatting to generate dense neural renderings from input
media. It accepts images, a video, or a ZIP archive as input and outputs a PLY model.
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e GDGS - Developed by i2CAT. Synthesises novel views from sparse images in real-time using 3D Gaussian
Splatting. It accepts a ZIP archive of images as input and outputs RGB and depth videos, along with trained
model weights.

e Face Restoration — Developed by RAl. Enhances the resolution and texture quality of facial images for
improved reconstruction. It accepts a set of images as input and outputs the enhanced images.

e Video Upscaler — Developed by RAI. Upscales videos by 2x or 4x and returns high-resolution video or frame
sets. It accepts a video as input and outputs an upscaled video or upscaled image frames.

e 3D Data Enhancement — Developed by i2CAT. Improves the resolution and geometry of existing 3D models.
It accepts a 3D model as input and outputs an enhanced 3D model.

e Generative Al — Developed by Capgemini. Generates realistic 3D models from natural language prompts
using Hunyuan3D-1. It accepts a text prompt as input and outputs a 3D model in ZIP format.

All service results can be downloaded or uploaded to the Neural Media Repository (NMR) for future reuse and
sharing within the platform.

9.3.6 XReco Authoring Tools

Zaubar CMS o
XRCapsules [
Unity Authering Tool [

Figure 121: Orchestrator: Authoring tools section.

The Orchestrator Dashboard includes direct integration with the XReco platform's authoring tools, such as
ZAUBAR CMS, XRCapsules, and the Unity Authoring Tool. These tools can be accessed through the Authoring
Tools panel (Figure 121) within the dashboard.

For XRCapsules and ZAUBAR CMS, which are web-based applications, the Orchestrator provides streamlined
interaction:

e C(Clicking the “Play” button for XRCapsules opens the web app with the current content basket automatically
loaded - no login required.

e For ZAUBAR CMS, the selected basket's assets are uploaded directly to the tool. Users can then access the
CMS using their XReco credentials.

In the case of the Unity Authoring Tool, which is a desktop application, clicking the “Play” button opens a pop-
up with installation instructions.

These integrations support a smooth handoff between asset preparation in the Orchestrator and immersive
content creation in the selected authoring environment.
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9.4 CMS-based authoring

The ZAUBAR CMS-based authoring tool has undergone significant evolution between D4.1 and D4.2, reflecting
the maturation from conceptual framework to production-ready implementation. While the previous version
focused on high-level capabilities and applications, the current iteration provides technical specifications and
workflow documentation.'®3

D4.1 emphasised the innovative integration of AR, Al, and CMS capabilities with features like Al mural maker and
generative pipeline concepts. The current update transforms these concepts into technical implementations,
detailing the microservices architecture, Unity3D integration, and specific authoring workflows. The Romania
1989 revolution example has evolved from a conceptual application to a technical case study demonstrating
precise GPS coordination, scene management, and object transformation capabilities.

ZAUBAR’s CMS-based authoring tool is a browser-accessible, Unity-integrated authoring platform purpose-built
for location-based AR experiences. Technically, it functions as part of a microservices architecture designed for
extended reality (XR) content creation, providing a seamless authoring pipeline from multimedia ingestion to
immersive scene delivery. Below is a more detailed technical description contextualised with an outdoor
historical AR tour on Victory Square (Piata Victoriei) in Timisoara, Romania.

9.4.1 Architecture and platform integration

ZAUBAR’s CMS authoring tool represents a sophisticated browser-accessible platform specifically designed for
location-based AR experiences within the XReco ecosystem. The system operates as a Unity-integrated authoring
environment that seamlessly connects with the broader XReco infrastructure through a microservices
architecture. It serves as a front-end client for authoring XR experiences, interacting with:

¢ Neural Media Repository (NMR) for content indexing and semantic tagging.

e 3D asset reconstruction services, e.g. via NeRF or Gaussian Splatting.

e Multimedia retrieval systems using CLIP-encoded multimodal embeddings.

e REST APIs and Dockerised microservices, ensuring portable, scalable deployment.

9.4.2 Location-aware AR content creation

The core strength of the ZAUBAR platform lies in its location-awareness capabilities. Content creators can
precisely anchor AR experiences to specific geographic coordinates using GPS-based positioning combined with
Visual Positioning System (VPS) technologies. Each media asset can be configured with multiple trigger types:

e Spatial triggers (GPS-, VPS-based).

e Scene transitions.

e Audio and text overlays.

e 3D reconstructions and animations from scene photogrammetry or neural rendering pipelines.

For instance, an AR tour in Victory Square, Timisoara, can include:

163 For an animated overview of all features, visit our tutorial https://www.youtube.com/watch?v=ez6uQHKVxxs
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e A neural rendering reenactment of the 1989 revolution using NeRF.

e Live multimedia overlays, such as historical images, video testimonials, or Al-narrated monologues rendered
in Mixed Reality.

e Various interactive elements that can be triggered and experienced based on distance.

9.4.3 Contentingestion & management

The CMS authoring system provides tools for multimodal content ingestion and management. The platform
supports diverse media formats including text, audio, video, and 3D assets, organising them into user-defined
content baskets that facilitate project management and workflow organization.

A distinctive feature of the platform is its mobile-first workflow integration. Content creators can utilise a
companion smartphone and multimedia content on-site before synchronising the materials back into the CMS
for further refinement and integration.

9.4.4 Scene creation and spatial management

Scene creation within the ZAUBAR platform follows a structured approach that balances creative flexibility with
technical precision. Each scene represents a discrete spatial experience tied to specific GPS coordinates or visual
triggers, enabling creators to design location-specific content that activates when users reach designated areas.

The scene initialisation process allows creators to assign human-readable names, detailed descriptions, and
unique identifiers through the CMS interface or Unity-based editor. Metadata fields support target audience
specification and language localisation, ensuring content accessibility across diverse user groups. The geospatial
anchoring system utilises GPS coordinates visualised through an integrated map interface, supporting both point-
based placement and area-based geofencing for more flexible activation zones.

9.4.5 Connecting scenes in a tour

Connected experiences can be created through the tool’s tour orchestration capabilities. Scenes can be linked
into coherent narrative sequences or thematic tours using tour management tools. Each tour consists of an
ordered list of scenes that can pass state data between locations, enabling persistent user progress tracking,
content unlocking mechanisms, and choice-dependent narrative branching.

Navigation tools within the CMS include Tour Mode simulation capabilities, allowing creators to preview the
complete user journey before deployment. End users experience seamless navigation through integrated mini-
maps and route guidance that clearly indicates completed scenes and upcoming destinations. This approach
enables complex multi-location experiences such as historical tours that progress from Victory Square through
Timisoara’s Cathedral to museum locations, each building upon previous narrative elements.

9.4.6 Object placement and transformation

Scene composition involves object management capabilities supporting diverse media types. The platform
accommodates 3D models in standard formats, video panels, images and spatial audio. A complete list of the
supported formats per media type is presented in Table 22.
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Table 22: Supported formats and features within ZAUBAR's CMS-based authoring tool.

3D Models gITF, OBJ, FBX (via Unity3D)
Video Panels MP4 overlays, animated textures
Images PNG/JPEG billboards, Ul cards
Audio Spatial sound, ambient layers
Text Labels, annotations, subtitles
Holograms Volumetric Video, NeRF/FVV

Object transformation tools enable precise positioning, rotation, and scaling through Unity3D’s scene graph or
intuitive CMS interface sliders. Dynamic transformation capabilities support real-time adjustments based on user
interaction or temporal triggers. The platform includes intelligent snap-to-surface and ground-plane detection
systems that ensure realistic object placement within the AR environment.

9.4.7 Material and visual adjustments

Each object supports material customisation and shader manipulation for visual fidelity and thematic style.
Material editing options include RGBA value specification, gradient application, and texture mapping capabilities
for diffuse, normal, and specular map integration. Transparency and opacity controls enable fade effects and
layered visual compositions, while emissive properties support highlighting and atmospheric lighting effects.

The shader support system accommodates Unity-compatible rendering pipelines including Standard PBR, Unlit,
and AR-optimised mobile shared. Custom shader importation and preset selection through the CMS interface
enable advanced visual effects and thematic consistency across complex AR experiences.

9.4.8 CMS and Unity integration workflow

All scene elements are accessible from the CMS asset browser, where users can:

e Drag assets into the scene,
e Preview in real-time,
e See semantic-tags, related content, and reuse frequency.

Unity3D’s play mode or WebGL viewer provide real-time preview. The experience can be emulated via GPS
spoofing or virtual simulation for testing purposes.

9.4.9 Implementation example: Victory Square Historical Experience

The practical application of these capabilities can be demonstrated through a historical AR experience centred
on Victory Square in Timisoara. The implementation process begins with scene creation using GPS coordinates
(45.7537° N, 21.2257° E) and descriptive metadata identifying the location’s significance during the 1989
Romanian Revolution.
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Content placement involves positioning historically accurate 3D models, e.g. period-appropriate barricades,
using ground anchor technology for realistic integration with the physical environment. Audio elements including
protest recordings are configured with precise spatial ranges, creating immersive soundscapes that activate 10-
meter proximity zones. Video panels displaying archival footage provide historical context while maintaining
visual integration with contemporary environment.

Scene transitions enable seamless progression to related locations, such as the Cathedral, creating a cohesive
narrative experience that guides users through historically significant sites. Material adjustments to 3D objects,
including weathering effects through roughness and transparency modifications, enhance visual authenticity and
emotional impact. The complete experience integrates into the broader “Voices of Freedom — Timisoara AR
Walk” tour, demonstrating the platform’s capability to create meaningful, educational, and emotionally resonant
AR experiences that connect users with historical events and locations.

10 Transformation services related KPIs

This section provides an overview of how the developed XReco transformation services address both the
functional and non-functional requirements set forth in the project and demonstrates progress towards the
project’s strategic objectives. The focus is on mapping the capabilities of the XReco platform — including content
search, reconstruction, enhancement, and authoring tools — to the specific requirements and KPlIs defined for
enabling effortless XR and immersive media creation.

The context of this section is rooted in “Objective 3: To develop and integrate novel technologies for enabling
effortless XR and immersive media creation”. This objective is supported by a set of KPIs that measure the
maturity, user acceptance, and usability of the delivered solutions. While KPIs that have to do with user
acceptance are part of WP5, the relevant KPIs for WP4 are the following:

e KPI3.1: At least three (3) XR services are above TRL6.
The KPI is considered to be achieved, since many of the services have been evaluated in real working
conditions for the realisation of XReco’s demonstrators. More specifically, SfM, FVV, holoportation, as well
as NeRF, and face reconstruction technologies, have been applied in professional contexts for
demonstrating the broadcasting and the tourism/automotive scenarios (D5.2).

To comprehensively evaluate both functional and non-functional requirements, we present Table 23, which
provides a curated list of key XReco requirements. Each requirement is accompanied by a clear indication of its
fulfilment status, as well as a reference to the relevant section or evidence within this deliverable for validation.
This structured approach ensures transparent and traceable assessment of the platform’s capabilities.
Additionally, we provide a mapping with the technical validation experiments defined in D2.2. More specifically,
the experiments that are relevant to the technologies presented in this deliverable are 3D Reconstruction EXP-
4.1, Neural Rendering EXP-4.4, Freeviewpoint Video (FVV) EXP-4.2.
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Table 23: Evaluation of functional and non-functional requirements, and mapping to experiments defined in D2.2. “-“ indicates that the

FR.118.1

NF.119.2

NF.120.2

NF.121.2

NF.122.2

FR.131.1

FR.132.1

NF.160.1

NF.161.1

NF.162.1

NF.163.1

NF.164.1

NF.165.1

NF.148.1

requirement does not map to an experiment.

The Volumetric Video Services MUST provide Free
Viewpoint video services live and streaming purposes
The Volumetric Video Services SHOULD provide Free
Viewpoint video services with a motion-to-photon
latency <= 300 ms

The Volumetric Video Services SHOULD provide Free
Viewpoint video services with a capturing frame rate
>= 25fps

The Volumetric Video Services MUST provide Free
Viewpoint video services with a motion-to-photon
latency <= 250 ms

The Volumetric Video Services MUST provide Free
Viewpoint video services with a capturing frame rate
>= 30fps

The FVV View Renderer SHOULD be able to work on a
cloud environment as a virtualized service

The FVV Live system SHOULD be able to support
several simultaneous View Renderers.

The Volumetric Video Services MUST provide Free

Viewpoint video services with a capturing resolution >=

1080p

The Volumetric Video Services MUST provide Free
Viewpoint video services with a minimum camera
range >= 90 degrees

The Volumetric Video Services MUST provide Free
Viewpoint video services with a maximum
Transmission BW per stereo camera <= 100 Mbps
The Volumetric Video Services MUST provide Free
Viewpoint video services with a rendering frame rate
>= 30fps

The Volumetric Video Services MUST provide Free
Viewpoint video services with a rendering resolution
>=1080p

The Volumetric Video Services MUST provide Free
Viewpoint video services with Virtual Camera control
with 6 degrees of freedom

The XReco Neural Rendering Services MUST be able to
render objects from multi-view RGB images of the

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

By-design
(Section 6.3)
Section 6.3.5

Section 6.3.5

Section 6.3.5

Section 6.3.5

Section 6.3.5

Section

6.3.3.1
Section 6.3.5

Section 6.3.5

Section 6.3.5

Section 6.3.5

Section 6.3.5

Section 6.3.5

Table 3

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.2

EXP4.4
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NF.149.1

NF.150.1

NF.156.1

NF.157.1

NF.158.1

NF.159.1

NF.154.2

NF.235.2

NF.236.2

NF.237.2

same object with a minimum rendering quality PSNR
>=24dB

The XReco Neural Rendering Services MUST be able to

render objects from multi-view RGB images of the

same object with a minimum rendering quality SSM >=

0.75

The XReco Neural Rendering Services MUST be able to

render objects from multi-view RGB images of the
same object with a minimum rendering quality LPIPS
<=0.25

The XReco services MUST provide 3D reconstruction
utilizing neural implicit functions with a minimum
rendering quality with a PSNR >= 24dB

The XReco services MUST provide 3D reconstruction
utilising neural implicit functions with a minimum
Rendering Quality with a SSIM >=0.75

The XReco services MUST provide 3D reconstruction
utilising neural implicit functions with a minimum
Rendering Quality with a LPIPS <= 0.25

The XReco services MUST provide 3D reconstruction
utilising neural implicit functions with a minimum
Geometry Quality with a Chamfer Distance <= 4.5
The XReco services MUST provide 3D building
reconstruction with a minimum Rendering Quality
(through objective measurements) with a PSNR >= 24
The XReco services MUST provide 3D building
reconstruction with a minimum Rendering Quality

(through objective measurements) with a SSIM >= 0.75

The XReco services MUST provide 3D building
reconstruction with a minimum Rendering Quality
(through objective measurements) with a L? distance
between 3D objects <= 0.01, resizing them so their
bounding box diagonal is 1.

The XReco services MUST provide 3D building
reconstruction with a minimum Rendering Quality
(through subjective measurements) with a MOS >= 3

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

Table 3

Table 3

Table 7

Table 7

Table 7

Table 7

Table 3,

Table 7

Table 3,
Table 7

Table 3,
Table 7

Figures 28,
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32
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EXP4.1
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EXP4.1
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11 Conclusion

The XReco platform’s mature service ecosystem addresses distinct use cases across the content creation
spectrum. Content search and filtering services excel in multilingual news environments through NewsTagger’s
fine-tune approach and location-based discovery via the Mixed Reality interface, enabling intuitive field reporting
scenarios where traditional search interfaces can prove impractical.

3D reconstruction service selection depends primarily on object characteristics and deployment constraints. SfM
proves optimal for static architectural subjects and cultural heritage documentation requiring high geometric
accuracy, while NeRF-based implementations address complex lighting scenarios where photogrammetry usually
struggles. 3DGS provides the ideal solution for real-time rendering applications where immediate visual feedback
takes precedence over absolute precision.

Human-centred reconstruction services target distinct application domains based on capture complexity
requirements. GDNeRF technology is efficient in sparce camera configurations, while FVV enables immersive
communication and telepresence applications requiring 6DoF navigation around human subjects.

The authoring tool selection follows a tiered approach addressing varying technical expertise levels. Unity-based
tools offer maximum flexibility for more experienced developers requiring custom functionality, while XR-
Capsules occupies the strategic middle ground between complexity and accessibility through template-based
authoring. CMS-based authoring addresses location-specific content creation, proving most effective for tourism
applications and geospatial storytelling scenarios.

Public platform integration leverages the containerised microservices architecture to enable scalable
deployment across diverse infrastructure environments. Core reconstruction services are available through
public cloud deployment with appropriate resource management, while authoring tools maintain hybrid models
balancing accessibility with performance requirements for intensive development workflows.

Ease of use considerations address varying technical expertise through progressive complexity models, with
entry-level users benefiting from template-driven interfaces and automated processing workflows while
advanced users retain detailed parameter control. The 10x reduction in memory 1/O latency particularly can
benefit resource intensive applications, while the modular architecture enables gradual platform adoption
without requiring comprehensive workflow transformation.

The successful containerisation and validation through real-world deployment scenarios demonstrates readiness
for broader adoption while providing a foundation for continuous improvement based on production use-cases.

The advancements documented in this deliverable position XReco as a leading solution for organisations seeking
to modernise and streamline their XR content creation workflows. The modular, microservices-based
architecture enables seamless integration with existing media production pipelines, reducing adoption barriers
for broadcasters, cultural institutions, and creative agencies. The platform’s ability to automate content
discovery, enhance legacy assets, and deliver immersive, location-based experiences address critical industry
needs for efficiency, scalability, and innovation.
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With the growing demand for immersive media in sectors such as broadcasting, tourism, education, or heritage
preservation, XReco offers a compelling value proposition. The platform’s support for real-time authoring, and
its compatibility with industry-standard tools (such as Unity) further enhances its appeal to both technical and
non-technical users.

Looking ahead, XReco is well positioned to drive the next wave of innovation in XR content creation and
distribution. The project’s commitment to openness and interoperability (open-source technologies with
permissive licenses, REST APIs for service communication) enables ongoing ecosystem expansion, including third-
party service integration and community-driven enhancements. Future developments may focus on:

e Expanding use cases: Broadening the platform’s applicability to novel domains such as live events or
interactive storytelling.

e lLeveraging immersive technologies: Incorporating advances in generative Al, multimodal retrieval, and
real-time rendering to maintain technological leadership.

e Strengthening community engagement: Fostering partnerships with industry stakeholders, academic
institutions, and open-source communities to accelerate innovation and adoption.

By continuing to refine and expand its capabilities, XReco is poised to become a cornerstone of the immersive
media ecosystem, supporting the creation of rich, engaging, and accessible XR experiences for diverse audiences
worldwide.
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Annex |: Extended information for components context

11.1 Details on sample structure for RSS items in News Content Tagging

Prompts are structured using the Llama-3.1-8B-Instruct template applied to the following structured messages
(for each RSS item):

[

]

"role": "system",

"content": "You are a multilanguage AI assistant aimed to suggest tags in news
articles.”

"role": "user",

"content": "Analyze the following news article and assign a list of representative

tags to the content, returning always at least 3.

Title: <title of the article>

Subtitle: <subtitle of the article (if present)>

Text: <text of the article>

The response has to be given in the following format "[<tagl>, <tag2>,.. ]", where

the <tag>s are the tags identified and written in the same language of the article.
Do not add any further text."

"role": "assistant",
"content": <list of the tags assigned by journalists as [<tagl>,<tag2>,...]>

The LoRA adapters obtained with the fine-tuning process described above are available on Hugging Face®.

711.2 GDNeRF APl Implementation

The GDNeRF API provides an interface for training and running inference on GDNeRF-based models. It is built
using FastAPI, with asynchronous job handling through Celery and Redis. It is readily available at
http://195.251.117.31:8000/docs.

164 https://huggingface.co/raicrits/Llama NewsTagger XRECO (last accessed May 29", 2025)
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Key Endpoints

POST /upload_zip/{dataset_name}
Uploads a dataset to the system. The dataset must be structured with the necessary manifest.json, calibration
file, RGB images, and depth maps.

POST /train
Initiates fine-tuning on an uploaded dataset. Requires an experiment name, dataset reference, quality mode,
and downsize factor.

GET /check_status/{task_id}
Returns the status of an ongoing task (e.g., upload, training) using the task ID.

GET /download_experiment/{experiment_name}
Downloads the rendered RGB and depth videos as well as the trained model weights for a given experiment.

POST /infer_views_from_zip
Performs inference using a zipped dataset with videos and camera parameters to synthesize novel views from

few inputs.

GET /download_preview
Fetches the last generated video result from a completed inference task.

Typical Workflow

1. Upload a dataset using /upload zip/{dataset_name}. The dataset should be zipped and follow the
GDNeRF structure.

Train the model with /train, providing experiment settings.

Check progress via /check_status/{task_id} to monitor uploads or training.

Download results once training completes using /download_experiment/{experiment_name}.

Infer new views from uploaded video-based data using /infer_views_from_zip.

ou ks wN

Retrieve latest output with /download_preview.

11.3 XRcapsule JSON Specification

In this part of Annex | we provide the structure, required fields, data types, and expected behaviour for XRcapsule
JSON files. XRcapsule is a modular JSON format designed to represent interactive XR scenes that can be authored
with simple templates and executed on mobile and desktop devices using the XRcapsule player.

11.3.1 Root structure

{
"Sschema": "string",
"Metadata": MetadataObject,
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"Capsules": [ CapsuleObject, ... ]
}

11.3.2 MetadataObject

{
"FileVersion": "string",
"XRCapsuleEditorVersion": "string"

}

Field Type Description
FileVersion string  Version of the XRcapsule file format.

XRCapsuleEditorVersion string Version of the editor that created the file.

11.3.3 CapsuleObject

"Name": "string",
"TargetDevices": "string",
"Workspace": WorkspaceObiject,
"Assets": [ AssetObject, ... ],

"Scene": SceneObject

}
Field Type Description
Name string Human-readable name of the capsule.
TargetDevices string Target platform (e.g., “Smartphone AR”).
Workspace WorkspaceObject Defines unit scale and environment.
Assets list of AssetObject Media elements used in the scene.
Scene SceneObject Scene graph including objects, cameras, and triggers.

11.3.4 WorkspaceObject

{
"Volume": [ number, number, number ],
"Unit": "string",
"Environment": {

"Name": "string",

"Type": "string",
"SourceURL": "string | null"
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}
}
Field Type  Description
Volume [float] Dimensions of the workspace.
Unit string  Typically “meters”.

Environment object

HDR environment config.

11.3.5 AssetObject

D4.2 // XR & Media Transformation Services v2

"AssetUUID": "string",

"Name": "string",
"Type": "string",
"SourceURL": "string",
"Metadata": {
"XReco": {
"Notes": "string",
"BoundingBox": [float, float, float],
"Polygons": int,
"Resolution": [int, int] | null
}
}

}
11.3.6 Asset Types

e "3D.Model"

e "Image"

e "Video"

e "360 Degree Video"
e "Stream"

o "FWW"

e "NeRF"

e "Cloudpoint"

11.3.7 SceneObject

{

"Cameras": [ CameraObject, ... ],
"Objects": [ SceneObjectltem, ... ],
"Triggers": [ TriggerObject, ... ]
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11.3.8 CameraObject

"Name": "string",
"SceneUUID": "string",
"Enabled": true,
"Transform": TransformObject,
"FollowTarget": {
"Enabled": true,
"TargetPosition": [string, string, string]
}
}

11.3.9 SceneObjectltem

"Name": "string",
"AssetUUID": "string",
"SceneUUID": "string",
"Visible": true,

"Enabled": true,

"Transform": TransformObject

}
11.3.10 TransformObject

{
"Position": [string, string, string],
"Rotation": [string, string, string],
"Scale": [string, string, string]

}

All values are stringified floats for cross-platform compatibility.

11.3.11 TriggerObject

"Type": "string",
"TriggerParameters": [ "string", ... ],
"SceneTargetUUID": "string",
"OnActivate": "string"
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11.3.12 Trigger Types

o "Touch - Visibility"

e "Touch - Transform"
e "Time - Visibility"

e "Time - Transform"

11.3.13 Best Practices

Use consistent units and volume scale across all capsules.

Include at least one visible object and one environment HDR to avoid empty scenes.
UUIDs must be unique within each capsule.

Maintain readable and descriptive Name fields for clarity.

11.3.14 Example Minimal XRcapsule

{
"Sschema": "https://xrcapsule.visyon.tech/schema#",
"Metadata": {

"FileVersion": "0.0.2",
"XRCapsuleEditorVersion": "1.0.0"
2
"Capsules": [
{
"Name": "Example Capsule",
"TargetDevices": "Smartphone AR",
"Workspace": {
"Volume": [5, 5, 2.5],
"Unit": "meters",
"Environment": {
"Name": "HDRI_Env",
"Type": "HDRi",
"SourceURL": "https://example.com/env.hdr"
}
2

"Assets": [],
"Scene": {
"Cameras": [],
"Objects": [],
"Triggers": []
}
}
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Annex Il: RGB-D Cameras information

11.4 Capture Devices

As the goal of the capture setup is to be consumer-grade, the cost and accessibility of the capture devices must
be carefully considered, in addition to meeting the essential technical requirements—most notably, the ability
to estimate depth in real time. The devices that meet these criteria generally fall into three main categories, each
defined by its underlying depth estimation technology. A summary of these technologies is provided in Table XX.

Stereo cameras operate based on the same principles as human binocular vision. They use two sensors placed
at a fixed distance from each other (known as the baseline) to estimate depth by analyzing disparities between
corresponding points in the two images. These cameras tend to be more affordable, as they rely on widely
available imaging sensors (color, monochrome, or infrared). However, the computational cost of post-processing
the image data is relatively high. The accuracy of stereo cameras is strongly influenced by both the baseline and
the distance to the object. Additionally, they are generally poor at detecting flat surfaces. On the positive side,
stereo cameras can function in outdoor environments—as long as they do not rely on infrared light, which can
lead to overexposure under sunlight. While they are effective for basic distance measurement, the overall
reconstruction quality is insufficient for our specific use case.

Time-of-Flight (ToF) cameras represent an active sensing technology. They operate by emitting a pulse of light
and measuring the time it takes for the light to reflect off surfaces and return to the sensor, thereby estimating
depth. A significant limitation of this technology is its reduced accuracy in outdoor settings due to ambient light
interference. Additionally, certain materials—such as deep black or highly reflective surfaces—may fail to reflect
the infrared (IR) light properly, resulting in missing depth data. Nonetheless, ToF cameras generally offer superior
reconstruction quality compared to stereo cameras. Although the widely used Kinect 4 Azure camera has been
discontinued, the Orbbec Femto Bolt camera—based on the same technology—has emerged as its de facto
replacement in the sector.

Structured light cameras are another form of active depth-sensing technology. These systems consist of two
primary components: a projector that emits a known (often invisible IR) light pattern onto the scene, and a sensor
that captures the resulting image. Depth is estimated by analysing distortions in the projected pattern. Like ToF
systems, structured light cameras are vulnerable to ambient light interference and thus perform poorly in
outdoor environments.

Table 24: Summary of depth estimation algorithms along with exemplary camera technologies.

low hardware requirements  long detection distance convenience for
miniaturization
Advantages low cost large tolerance to ambient range low resource consumption
high robustness to light high frame rate high resolution

disturbance
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Disadvantages

Representative

large calculation complexity

strong object texture
dependence*

limited measurement range

Zed?2
Oak-D
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high equipment requirements

high resource consumption

low edge accuracy

Kinect4Azure
Orbbec Femto Bolt

small tolerance to ambient
light
short detection range

high noise

Kinect vl

The replacement device needs to offer similar quality and price range. After looking at different options (as
shown in Table 25) in the market, the best option we found was the Orbbec Femto Bolt cameras which use the
same technology as the K4A devices.

Table 25: Table with the main characteristics of different RGB-D cameras studied as replacement for the Kinect 4 Azure sensor.

Kinect
4 Azure
Orbbec
FemtoB
olt
RealSen
se D435
RealSen
se
DA435i
OAK-D
Pro
Zed2

ToF

ToF

AIRS

AIRS

AIRS

Neural
Stereo

0.5-3.86 <11mm 3839 x 640x 30/ 90° x 59°
+0.1% 2160 576 30
0.3-54 <11 mm 3840 x 640x 30/ 8092 x
+0.1% 2160 576 30 51¢
03-3 <2% at 1920 x 1280 30/ 69° x 42°
2m 1080 x720 90
03-3 <2% at 1921 x 1281 30/ 69° x 42°
2m 1080 x720 90
0.7-12 ~2% at 4056 x 1280 60/ 66° x 54°
<4m 3040 x800 120 /78°
0.3-20 -- 2208 x 2208 100 110° x
1242 X 70°/
1242 120°

752 x Rolling/Global  yes
652

752 x Rolling/Global  yes
652

87° x Rolling/Global  no
58°

87° x Rolling/Global  yes
58°

80°x 55° Rolling/Global no
/89.5°

110° x E.S. Rolling yes
70°/ Shutter

120°

The main issues when doing this migration was getting familiar with their SDK and inner workings. As a bonus,
we were able to make use of their hardware to synchronize the cameras and improve the visual quality of the
reconstruction. During this change we also implemented the use of higher resolutions getting a final
reconstruction with more points and better quality of the results.
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